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CHAPTER T
INTRODUCTION

The Method of Invariant Imbedding

This thesis 1s concerned with the practical application of a
particular formulation of neutral particle transport theory called
the method of invariant imbedding to neutron penetration problems.

The invariant imbedding method apparently began with the
work of the Russian astrophysicist, Ambarzumian, on the reflection of
light from an infinite half space [1] . The fornulation of a complete
set of "principles of invariance” and their systematic integration
into a general theory including finite media, was carried out by
Chandrasekhar [2] . The method was applied to neutron transport
problems by Bellman, Kalaba, and Wing [3] under the name "invariant
imbedding" which seems to have become the accepted name for the method,
Invariant imbedding was first applied to neutron shielding problems
by Beissner [4] .

Invariant imbedding is not a method for obtaining analytic
or numerical solutions of the Boltzmann equation., It is a different
approach to the derivation of particle transport equations, The
invariant imbedding method concentrates on the radiation flux crossing
the boundaries of a reglion and on how this radiation flux varies as
the thickness of the region changes, in contrast to the Boltzmann type
formulation in which attention is concentrated on the variation of
the radiation density with position inside a region of fixed thickness,
The invariant imbedding approach leads to a nonlinear initial value

8



DR G -. 28 . o

problem instead of the linear boundary value problem obtained by the
Boltzmann approach,

Advantages of the invariant imbedding method for shielding
purposes include: 1) results may be obtained over the whole range
of possible shield thicknesses in one problem; 2) the results are
in & directly useful form, i.s.,, reflection and transmission matrices
which may be used to obtain the reflected and transmitted fluxes for
any incident flux; 3) the method applies rigorously to heterogeneous
shields without increase in computer memory requirements because of the
heterogeneity; 4) the method is efficient for thick shields (deep
penétrations) because the time required increases linearly (or less)
with the shield thickmess, i.e., a 30 mean free path (mfp) thickness
requires not more than twice as long as a 15 mfp thickness for the same
degree of heterogeneity; and 5) the error in the numerical solution
of the discrete approximations to the rigorous invariant imbedding
equations may be easily estimated and controlled.

Disadvantages include: 1) the method is fairly time consum-

ing during the initial traneiont ot tha bepinmins of 2 problonx and Aoss
not appear to be economically competitive with other methods such as
the Monte Carlo method when the shield is thin and 2) the method is
not easy to apply in other than plane geometry, hence only the plane
geometry problem is considered in this thesis although the invariant
imbedding method has been used to derive neutral particle transport
equations in spherical and cylindrical geometries by Bellman, Kalaba,
and Wing [5, 21} .

The derivation of plane geometry reflection and transmission
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equations by the invariant imbedding method given in Chapter II follows
the work of Chandrasekhar in that the transmission equation is written
in terms of the diffuse transmission rather than the total transmission
used by Bellman, Kalaba, and Wing, It was pointed out by Beissner [6]
that there is both theoretical and experimental jJustifisation for
performing separate calculaticns for the uncollided flux and the

‘diffuse (scattered) flux. The angular distribution of the total transmis-

sion is very anisotropic at small thicknesses because of the delta fune-
tion initial condition whereas the angular distribution of the diffuse
transmission is relatively smooth in the region, leading one to suspect
that a lower order angular approximation may suffice for accurate
calculation of the diffuse transmission than for the total transmission,
No restriction on the positlion or energy dependence of the
cross sections other than the one dimensional character of the plane
geometry problem are made in the baslc derivation, although the numerical
solution is restricted to media composed of discrete layers. The number

of discrete layers may be as large as desired and this is one of the

v - P S N [ 3 N | | = PR el bl R.2dh2_ —_—
ey roal adwan vaABTE Ui WS mo Wi, LOCauso UL wid aliiviadl Valus characts

)-l

of the problem, the solution starts at zero thickness and builds up a
slab shield one layer at a time so that, in principle, different cross
sections could be used for each layer.

The scattering process is restricted to the azimuthally symmetric
case since this is the case of practical interest. This assumption
means that the scattering process is assumed to depend only upon the
initial and final energles and the angle of deflection. This restriction

is not necessary and a reflection equation for the general case is given
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in Chapter II,

The boundary conditlions are exact in the sense that they are
inherent in the problem formulation and are satisfied exactly in all
orders of approximation in contrast to methods such as the spherical

harmonics (Pn) method in which the boundary conditions are only
satisfied approximately.

The results of this work indicate that the most useful applica-
tlons of the invariant imbedding method in plane geometry will probably
be to problems in which the moments method does not apply because of
heterogeneity and, in which the attenuation is large enough to make
the Monte Carlo method unattractive on account of excessive computing
time and, in which the scattering is sufficiently anisotropic to make
the application of the usual varieties of SNG or DSN type transport
theory solutions suspect,

The transmission matrix method of Yarmush, Zell, and Aronson [28]
. which also uses reflection and transmission matrices can be regarded as
a speclal technique for obtaining numerical solutions of the Boltzmann
type boundary value problem, This method requires the diagonalization
and inversion of matrices containing the material properties for each
homogeneous layer of a shield and the subsequent combination of this
information into an overall transfer matrix for the shield containing
both the reflection and transmission matrices and is quite different
from the invariant imbedding method in which integration of a coupled
set of differential equations subject to specified initial conditions
replaces the matrix inversions at each thickness of each layer. Both

methods may be used to generate reflection and transmission matrices
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that may be tabulated for future use,

The original impetus to investigate the application of the
invariant imbedding method to neutron shielding problems was provided
by the work of Beissmer [4] . It appears that the later work by
Beisener [6] on the penetratien of neutrons through thin homogeneous
polyethylene slabs is the only other application of the invariant
imbedding method to energy dependent problems reported to date., It
is hoped that this thesis has added sufficiently to the development
and practical application of the invariant imbedding method so that
other investigators will also be encouraged to try the method,

Qutline of Thesis
In Chapter II the invariant imbedding method is used to derive
rigorous equations for the reflection and transmission of neutral
particles in plane geometry. An analytic solution of the reflection
and transmission equations in a very restricted case is also presented,
The numerical solution of these reflection and transmission

equations is discussed in Chantar TTT, Pimst  the r4o5r5us squations
are approximated by a finite set of coupled first-order nonlinear
differential equations subject to specified initial conditions, Various
numerical techniques for the solution of this set of differential
equations are discussed and exponential approximations are introduced in
order to take advantage of the physics of the radiation penetration
problem, The application of the simplest and most successful of the
exponential approximations to the solution of the reflection and

transmission equations is presented along with the results of an
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investigation of the stability of the approximation,

Numerical results for four different problems are presented in
Chapter IV. The first two problems are restricted to the monoenergetic
(one velocity) case and are presented to show some aspects of the
characteristic behavior of the reflection and transmission variables and
to verify the numerical solution techmique before proceeding to more
complicated cases, The third problem: considers the penetration of
neutrons through large thicknesses of water (up to 210 cm). Satisfactory
agreement between the invariant imbedding results and other transport
theory methods is shown for both the transmitted neutron dose rate
and for the neutron energy spectrum, The fourth problem considers a
relatively thin three layer iron-polyethylene-iron shield, Satisfactory
agreement between Monte Carlo method results for this shield and the
invariant imbedding results is shown.

Conclusions and suggestions for further work are discussed in
Chapter V.

The details of the input and output data processing and the
assnnistad commiter asdes are proconited in the appsidicss,

While it is clear that some items are relatively more important
than others the reader is cautioned that in computer oriented work such
as this, there are no truly unimportant detalls, The deep penetration
problem is very sensitive to small details because of the very great
attenuation, An attempt has been made to point out the most serious

difficulties encountered in this work.
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CHAPTER II
REFLECTION AND TRANSMISSION IN PLANE GEOMETRY

Introduction

Equations for the reflection and transmission of radiation by a
slab of finite thickness in one dimension and of infinite extent in the
other two dimensions are derived in this chapter by means of the method
of invariant imbedding., No restrictions on the position or energy
dependenes of the cross sections are made other than the one dimensional
character of the problem,

The reflection and transmission equations (2,31) and (2.32)
are speclalized to the case of practical interest in which the scattering
process 1s assumed to be azimuthally symmetric, i.e., that the scattering
process depends only upon the initial and final energies and the angle
of deflection. This restriction is not necessary and the reflection
equation for the general case is given in equation (2,24).

The boundary conditions are exact in the sense that they are
inherent in the problem formulation and are satisfied exactly in all
orders of approximation, The practical case with azimuthally symmetric
scattering considers a monoenergetic conical source of strength 1/ 2/
per unit time with energh E® and direction cosine /L' (see Fig. 2).

The analytic solution of these reflection and transmission
equations is given for the monoenergetic case with scattering in only

the +z direction in a homogeneous medium,

Derivation of Reflection and Transmission Equations

Consider a slab extending from z=0 to z=s and of infinite extent

in the x and y directions, Let T be a position vector from the origin

14
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of the x,y,z coordinate system to the particle position, Let the
particle direction be specified by the unit vector Ti where 7 i
specified by the polar angle © and the azimuthal angle ¢ as shown
in Fig, 1. The unit vector 2L has components

.n.-x'- sin®© cos @
S | ._.n.y=sihesin<9
|  a,=cee (2.1)

The element of solid angle dl around & is

dit = sino de d¢ . (2.2)
Defining
cos® =)L (2.3)
then
’ d& = duwde . (2.4)

The position vector r has components

b
]

r sin© cos @

r sino sino

«
n

%2 =T Cos & - (2.5)

The differential element of volume dV around r is

2

dV = dr = r” sinec de d@ dr

=r2 dtdr

=r2dy dO dr (2.6)
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FIGURE 1

COORDINATE SYSTEM
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Let N(#, {1 ,B,t)dVd.adE represent the number of particles whose

position vectors lie within dV around T, whose directions lie within d Q
around Q. , whose energies lie within dE round E, measured at time t,
Then the number of particles, per unit volume at position ?-, per unit

energy at energy E, at time t, is

n(r B, t) = fN(r, O LR, t)d0 (2.7)

Let the vector velocity be v and the scalar veloelty be v,

Then
v = vil. (2.8)
The number of particles per unit time, passing through a unit
area normal to the direction of motionD7, at position ¥, per unit
energy E, at time t, is vN(%,9,E,t). The number of particles per
unit time, passing through a unit area in the x,y plane, at position
¥, per unit energy at energy E, at time t, is |coso| WN(F,0E,t).

N(r, i ,B,t) and vN(F,3L,E,t) will be caled the "angular
density" and the "angular flux" respectively.

The number of particles interacting per unit time, per unit
volume at position T, per unit solid angle in directionil, per unit
energy at energy E, at time t, is T (T,E,t)VN(F,IL,E,t) where

o (r,E,t) is the total macroscopic cross section (units of inverse
distance),

The quantity [cr (r,E,t) d]represonts (to first order in d
the probability that a particle willl undergo an interaction in passing
through a distance d. In passing from z to z + h, a particle travels

. a distance

d=h / |[cosB]. (2.9)
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Now consider only time independent cases and suppress the time
variable, Let f(¥,0E; 7 ',E')dEdQ be the probability that a particle
with initial energy E' and direction of motion (1!, will emerge after an
interaction with a target nucleus with an energy in dE about E and a
direction of motion in d.2 about &, The quantity £(F,S ,E; 0',B')
is normalized so that the integral over all exit energles and exit direc-
tions is unity, i.e.,

ﬁn‘/rdn £(¥, 00 ,E; Q',E') =1 . (2.10)

In the case of azimuthally symmetric interactions with sta-
tionary nuclel, the usual case, the probability that a particle will
emerge in any particular direction can only depend on (at most) the
particle's initial and final energies and on the angle between its
original direction ('( ©', ® ') and its direction after collision
f(e,p). Let

=0

cos © = u, = Q. o, (2.11)

Then

Mo =T\ [Lp\ 1T cont @ - 91 (2.12)

and we can now define a quantity g(?,/a, By ',E") such that

2m
g(?,/u' ,E;/LL',E' )dEy= /;(pl f(-!:,.ﬁ- ,E; jl-"E' )dEd/LL (2013)
[«]
is the probability that a particle with initial energy E' and initial
direction cosine /u' will emerge after a collision with an energy in dE

about E and a direction cosine in d 1 0 about /u .

Let C(T,E') be the mesn number of secondaries per collision
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where
C(#,E') = [#(F,E') C5FE) +rGE) + q (F.E) +

2 a;;Zn(i-’,E')] /| o (F,E") (2.14)

and where ¢, Ug* Tin* Tpon’ and @ are the fission, inelastic,
elastic, n,2n, and total cross sections, respectively and 2/ is the
mean number of neutrons per fission,

The total expected number of particles per unit time, per unit
volume at position ¥, tranaferred into dE about E and into d. about

IL from all other energlies and directions is
dEdﬂ..[ dE! fdﬂ_' v'N(r, 0',E') ¢ (F,B') C(F,E')E(F, n ,E; OL',E')
= N(F,_ (0 ,E)dEd . (2.15)

Now let there be incident upon the gz=s face of the slab an
angular flux of one particle per unit time, per unit area normal to the
direction of motion, with energy E' and direction N.'. For this flux,

(2.15) becomes
([dgnfd_()_ " 5(_(1_ . Q) S(El!_E!) o’(?,E”)f('f,ﬁ,E;_ﬁ",E")

c(r, E”)) = ¢ (7,B') C(Z,B') £(7, B ,E: SL',E") (2.16)

where the differentials dEd QL. have been cancelled out,
For this input define an angular reflected flux r(s,d ,E;T%%',E')dEdQ
- representing the expected number of particles per unit time reflected
through a unit area normal to the direction of motion, at position

z=s, with energy in dE about E and direction in d.Q aboutd .

Tarr o - P 2 amal Va
AIUW aull ali auka viviial Laye
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the slab and account for the particles reflected from the slab of
thickness s+h in terms of the reflection from the slab of thickness s
plus interactions in the layer of thickness h (see Fig. 2). The slab
properties are ‘assuned to be uniform in the x,y plane and variable
with position in the s direction. The distance travelled by an incident
particle in traversing the layer of thickness h is

d=nh/ || (2.17)

where -1< ' 0,
The probability that an incident particle will interact while
traversing the layer of thickness h is (to first order in h)
a(s,B')h /[ |t (2.18)

The reflected angular flux due to interactions of the incident angular
flux with the material of the layer of thickness h is (to first order in
h)

a(s,E')(h/ bu'DC(s,B' )E(s, v, @ ,E: ', @',E') (2.19)

where -1£/u.' < 0, 0cu<l, 0<¢o'< 27T, and 0L < 2T,
The angular flux incident upon the z=s face of the slab due to
interactions of the incident angular flux with the material of the

layer of thickness h is (to first order in h)

where -1< 4'<0, -1< <0, 0<@'€c2mM,and 0< P < 27,

The probability that an incident particle can pass from z=s to
z=s+h without interaction is given by (to first order in h)

1- o(s,B'")(b/ Ju']) (2.21)

where -1 ‘_—/M.' <0,
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Now sum up all processes leading to terms of first order or
less in h to obtain

r(s+h, 4,9 ,B; ', ¢',B') =

a(s,B')(h/ ju'| )(s, l')t(s/ ¢.E: u', @' ,E') +

2
([/thf q)u [d!" a{s,B' }(r/ | || XC(s,B')

f(s, u't, o', Bt B (s, i, @ E L, @4 LEY)
[1. cr(s,E)(h//u)]) + ([1- o(s,E')(h/ |a' | )]
r(s, u, 9,80, 9'.B") [1- o(s,E)bu )]) (/;/w'
/;&"de" 1 o(s,B' )(h/ [u'] )] (s, u', " EY UL P LEY)
a(s,B'")(h/ " )C(s, E")f(s/u é.Eu”, P",E") ) (fl/-
[/u 'que"fm" v [ dEm [dE" ! 1-<r(s E')(h/ [u |)
(s, u", J"E": u', @' E')G’:s E")(h/u")C(s,E")
£(s, u" ', Q" BT T ", PUEY) r(s, 4, P,Eiu”, PN E)
[1- (s, B) (th)]) + 0(h%) (2.22)

where -1 £ a' <0, 0<u<l, 0< J'4£ 27 ,and0<qd £ 27,

The various terms on the right hand side of (2.22) may be
explained as follows: the first term is (to order h) the probability that
a particle will interact in (s+h,s) and be back scattered: the second
term is the probability that a particle will interact in (s+h,s) and be

forward scattered times the probability of reflection from the s=s face
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times the probability of no interaction in (s,s+h); the third term is the
probability of no interaction in (s+h,s) times the probability of
reflection from the z=s face times the probablility of no interaction in
(s,s+h); the fourth term is the probability of no interaction in
(s4h,s) times the probability of reflection from the s=s face times the
probabdlity of interection in (s,s+h) followed by forward soatter; the
fifth term is the probability of no interaction in (s+h,s) times the
probability of reflection from the z=s face times the probability of
interaction in (s,s+h) followed by backward scatter times the
probability of reflection from the x=s face times the probability of no
interaction in (s,s+h); and the last term represents terms of order h2
and higher,

Equation (2.22) may be rewritten in the following form

r(sth s, P E;u' P E) - r(S.ﬂ.&.EiréL'.@'.E_') =
h

a(s,B')(1/ || )C(s,E')E(s, ut, DBz ', P',E') +

([/L [4)10 [dE" o;(_s_l.g"_)c(s El)f(s/L ", E"/bb P, E')

- / Jo
r(s/dJE/U' 4’"3") GsE «(sE)]

cnanm)] e (o[ =

r(s/u.. ", Bt ¢'.E') gSE-‘E--ZC(S E")f(s, &,Q,E ,@",E"))+
(/[/L“ fd/l" '[d(?"[d@" '[dE“[dE" 1
r(s,/u g "B /A ¢'.E") m'-E-'r)- C(s,E")

IRV LLE LY L Lot ot ﬂl"l‘\
,(p ,E b i(_{r) ;Eﬂ) P(S,/![.(’D.E./JL 9& ,E ) +

o(h) . (2.23)
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Now take the 1imit as h approaches zero to obtain a general equa-

tion for the reflection in plane geometry in the form
L (s ur @B ut, 9LE') =
v C(s,l')f(s,/a, OB ut, §FEY) +

([/u' [d " dE" M)C(S.E')f(s,/},,“, (P",E";/u,', Q',E')
r(s//a PEs ™ " E")) -(0;(.1.!11 +<fsE

r(,s'/u’,(p,g;/u)’ (p',E') ) (] /d&" [dE"

r(s/u," 4)" En:/wt 4)1 E') _ZS.SJ.Erlc(s E")f(s/a, (y E/(," 4)n Ena

fo o [ [ s

%C(S,E")f(syc" 'OCP“ I’E" |:/a/",<p"’Eﬂ)
r(s’/au(poE:/Lb“ l'&n l’E" l) (2.2)4,)

Whan the seattering is azimuthally symmetric, the reflectioh is

not a function of the azimuthal angle and
a2m
ﬁ@r(s.ﬁ. P B ', *E) = 27 r(s,u, E;jut,E'). (2.25)
o

Using (2.13) and (2.25) in (2.24) yields
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r(s, u,B; u',B') =
el o(s, 2 6(s, 0, a0 B

Nll—'
o =

[dE" —gih?—) C(s, E')g(s/a," E"/a, E')r(s/a, E/(," E")-
ﬂ%;.')_ TEE] op )

f;”[ dE" r(s,/,(," E"/(,' E') ﬂd—w) C(s, E”)g(s/a,E/u," E) +
/L"[ fw[ﬂn ' r(s /Ln Eﬂ/L E.)_ﬂg._E_'FZc(s )

(S/b" t E" l n E")r(s,/w E/ﬂJ" 1 E" l) (2 26)

where -1<4}< 0, 0<u<l and the initial condition is
r(0, £,E; 1" ,E') =0 (2.27)

The equation for the diffuse transmission analogous to equation (2,22)

is’

t(s*h./ﬂ,(P,E:/u»'. CptvE') =
(6‘(8 BB/ [t | )C(s,E)E(s, 4, P B 4, @B
exp (1/JLL|) jcr(s' E)ds! ]

([/a," dE" o(s, E') »T(Irl_ C(s,E'")

f(s/u," 4)n E" /LL ,Q'.E')t(S,/t.d),E:)o",(p".E") +

[1.. a (s, E')W]t(s M, @B pt, §VLEY) 4
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‘ (f/a'“[ 4)"de" [1_ 0’(8,3') F,%T:lr(sv/bnvCpn'E":/‘."CP.'E")
o

U“SS.E') h C(s, E")f(S/,L 4) E'/u," 4)31 E" )exp -(1//11,)

fae] Lol [

de“ dgh ¢ 1 -ofs,Ef )—-r- r(S/,(," (p” B,

/LL Cpt E! )h ‘ ) C(B E")f(s/(," ' (Pn ] E" l " cpn E"

t(s, 0§ B p ', 4)" ' E" ')) + o(n?) (2.28)

where -1£ 4'<¢0, -1< 440, 0<P'< 2w, 0¢d < 27 ,

The various terms on the right hand side of (2,28) may be explained

as follows: the first term is (to order h) the probability that a
particle will interact in (s+h,s), be scattered forward, and penetrate

- the slab of thickness s without further interaction; the second term is
the probability that a particle will interact in (s+h,s), be forward
scattered. and diffusely transmitted; the third term is the probability
of no interaction in (s+h,s) times the probability of diffuse transmis-
sion through the remainder of the slab; the fourth term is the
probability of no interaction in (s+h,s) times the probability of
reflection from the z=s face times the probability of interaction in
(s,s+h) followed by backward scatter times the probability of no further
interaction; the fifth term is the probability of no interaction in
(s+h,s) times the probability of reflection from the z=s face times
the probability of interaction (s,s+h) followed by backward scatter

Lo o 1
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slab; and the last term represents terms of order h2 or higher,
The diffuse transmission equation for the case with azimuthal

symmetry is
d_ t( 1 Rt
& Y, B i B ) =

%; i’—(;—t?T') c(s,E )g(s/ac ’Eiyc'.E' Yexp [-(1/1“0

(4

g(s/u.," E" ' B¢ )t(s/,o E/u,“ E" - —S—‘l/zrl)- t(s/L E/a,' E' )+
([ [dE" r(s/," B ut, )-—0-15%—)- C(s, E")g(S/o E/a,",E")
eXp [ (llldul) fO'(s' E)ds'] ) + 2’”’( /(, fd)u,

[dE"[dE" ' r(s/v' E":/u_,',E') M)C(s E")
g(s,/a,“ ' M l’/“/" E")t(s/a, E/_," ' E" :)) (2.29)

vhere -1< u'<0, -1£440, and the initial condition is

(0, ,Biy ! E') =0 , (2.30)

The factors of 7 in (2.26) and (2.29) can be eliminated and
these equations transformed into a more symmetric form by making the
substitutions R(sy,o,E;/L',E') = r(s,/a,E:/L' JEV) (4 e '|) and
T(s,/,b,E:/,U.E') = t(s,x,B; 4 ,E')/ (4|e'|) . This is equivalent
to changing the incident flux leading to (2.16) from one particle per
unit time, per unit area normal to the direction of motion, with
energy E' and direction Q' to an incident flux of 1/47 particles per
unit time, per unit area in the x,y plane, with eénergy E' and dirsctiionm

ar,




With this transformation (2,26) becomes
21—-R(s/,. Bi i E') = 20°(s, B )C(s,E' Ja(s, 0, B ! BY)- +

/ dE" o (s,E')C(s,B Jg(s, o7 E"; it BV IR(s, 1 ,EL " B") -
[EL'-HE-:-) + E—E—Z'EL] R(s,,B; &',B') +

f dag" R(s/a," E“/,L, ,B*) a(s,E")C(s, E")g(s/a, E/u_“ E") +

([%r[dﬁ!"[ [dE" ' R(s, M, E": /u, ,B') o(s,E")C(s,E")

g(s/U' L En /(/4" E“)R(S/u E/u," t E" l)) (2 31)
and (2,29) becomes

& e, 0B L' B =
s
ZG'(B,E')C(s,E")g(sy,o,E;/w",E')exp [- IFifﬂs',E)ds'] +

o o0
[%fhb—" [dE" a(s,E*)C(s,E' Jg(s, ", B"; 4' B')T(s, 00 , B " ,B") -

T/‘El 'r(s/E/u,'E' +

U% R(s/u," EM, /L ,E') o (s,E")C(s, E")g(s/a E ", E")
- 1/1,u|fa(s' E)ds])
‘/:ﬁr'/;E" MI'T dEn ¢ R(s,/u," E"/,(,',E')G’(s E")C(s,E")
—I|

(4]

g(s/u,“ ] E" t/le E")T(s,/,c E/AL" ] E" t) (2 32)

Equations(2,31) and (2.32) are the basic equations for the
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energy and angle dependent reflection from the transmission through a
slab of thickness s in plane geometry,

The only assumption made in deriving these equations was that
the scattering process was assumed to be azimuthally symmetric, i.e., that
the seattering process depends only upon the initial and final energies
and the angle of deflection.

The boundary conditions are exact for the case in which no
particles except those from the source are incident upon either face of
the slab, No restrictions on the position or energy dependence of the
cross sections were necessary.

Equation (2.24) with the substitution of R(s,/u ,E:/u',E')/ (4],1,0])
for r(s, /A,E; /,L',E') is in the monoenergetic case the same as the
reflection equation given by Chandrasekhar [2] . The corresponding
transmission equation is nearly but not quite the same as the
monoenergetic transmission equation given by Chandrasekhar. Chandrasekhar's
version is valid only for a homogeneous medium, i.e,, the factor
exp[—(l/[,ul) fg“(s',E)ds"] would be exp [ =(1/u)o(s,E) s]in
Chandrasekhar': version.

Analytic solutions of the reflection and transmission equations
may be obtained for very restricted cases, If particles are assumed to
1) travel only in the + z direction and 2) not to change energy and 3)

if the medium is homogeneous, equations (2,31) and (2.32) reduce to
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g—;R(s) = 20C g(1,-1) +<C g(-1,-1) R(s) -
2 o R(s) + R(s)TCg(l,1) +
4 R(s) o C g(1,-1) R(s) (2.33)
and
SE T(s) = 26¢C g(-1,-1) exp(- os) + oC g(-1,-1) T(s) -
acT(s) + R(s) o C g(-1,1) exp(-as) +
% R(s) oC g(1,-1) 1(s) (2.34)
where
R(0) = T(0) =0, (2.35)
Note that
g{-1,-1) = g(3,1) (2,28)
and
g(1,-1) = g(-1,1) (2.37)

because in the first case the particle direction does not change and

d in the second case the direction change is the same (180 degrees).
Equation (2.33) for the reflection can be solved directly by
the standard technique for a first order differential equation of the

a waenlt 4 e
. SAANS W ke W



R(s) = 2 (2.8)
A - 1 coth(Bs) - A
where
LY R NIPS S (2.)
and

B = oC g(1,-1) /A2

-1 (2.%0)
Equation (2,38) for the reflection is the same as given by Wing [8] .
Equation (2.34) for the diffuse transmission is more difficult,
It is helpful to first rewrite (2,34) in terms of the total transmission
and obtain the analytic solution of the total transmission equation.
The diffuse transmission solution is then obtained by subtracting the
uncollided component. The total transmission equation analogous to
(2.34) is

3

T, (8) = G-Cg(-l,l)Tt(s) -Q'Tt(s) +

R(s) v Cg(1,-1)T.(s) (2.41)

where the initial condition is now

T, (0) =2 (2.42)

The solutions of (2.41) and (2.3%4) can be expressed in terms of the
reflection in the forms

Tt(s) = ,/Az - 1 esch( Bs ) R(s) (2.43)
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™s) = T,(8) - 2exp(- as). (2.44)

Slightly less restrictive assumptions can be made, In
particular, instead of assuming that a particle is always scattered
straight forward or straight backward, an average value of the direc-
tion cosine could be used. The restriction to a homogeneous medium
could also be relaxed if desired (to discrete layers).

Discussion

An equation for the total transmission is obtained by deleting
the two terms containing exponential factors from (2.32) and changing
the initial condition to

Tt(o,/u,E;/,b',E') = z/“cg(/»-/u') g(E-E') . (2.45)

The derivation of this chapter was in terms of the diffuse
transmission even though the resulting equation is more complicated.
The angular distribution of the total transmission is very anisotropié¢
at small thicknesses because of the delta function initial condition
whereas the angular distribution of the diffuse transmission is
relatively smooth in the region. This leads one to suspect that a less
accurate angular approximation may be needed for the calculation of the
diffuse transmission than for the total transmission near the origin,
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CHAPTER III
NUMERICAL SOLUTION OF THE REFLECTION
AND TRANSMISSION EQUATIONS

Introduction

The plane geometry reflection and transmission equations derived
in Chapter II are rigorous but cannot be solved because of the integral
terms, As the first step in the numerical selution of these equations,
the integrals are approximated by finite sums thereby obtaining a finite
set of coupled first-order nonlinear ordinary differential equations,
The solution of this system of equations by ordinary methods such as
the Runge-Kutta and the Adams methods is then discussed, Finally, a
systematic method of deriving numerical methods for the solution of
differential equations based upon exponential approximations is intro-
duced and the application of the most successful of these methods to the
reflection and transmission equations is given,

The numerical solutlions based upon approximations that are
exact for exponentials which are discussed in this chapter would seem
to be useful in many other applications in which it is known from

the physics of the problem that exponential behavior is to be expected,

Reduction to a Finite Set of Differential Equations

In order to solve equations (2.31) and (2.32) numerically, the

integral terms are replaced by finite sums of the form
m
£f(x) = Z‘_ w, £(x.) (3.1)
=1

where the abscissas X and weights W, are to be chosen in accordance

()
W)
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with the particular numerical integration formula chosen. The discrete
form of (2.31) is

d
- & BLI) =

2 c(J)C(JI)p(1,3) +

i W(K) 0°(J)C(J)p(K,J)R(I,K) -

[;% + —E‘;é%;l_] R(I,J) +

Z‘ W(L)R(L,J) o (L)C(L)p(I,L) +
+1

N 2N
$) W) ) WLR(LI) T (LIC(LIB(K,LIR(L,K) (3.2)
k=1 L=+l

where the slab thickness is now x instead of s, N is the number of
particle states, p is the state-to-state transfer probability analogous
to (2.13) (see Appendix A for definition), «(I) is the direction
cosine assigned to state I, W(I) is the product of the energy and
angular integration formula weights divided by the absolute value of the
direction cosine for state I, and all quantities are functions of posi-
tion except the numerical integration (quadrature) formula abscissas
and weights W,

The number of particle states, N, is defined as the product of
the number of discrete energy values used in the energy integrations
and the number of discrete direction cosines used in the angular integra-

tions over (-1,0) and (0,1). Particle states from 1 to N have all
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possible energies combined with all possible positive direction cosines,
The particle direction is reversed without change in energy group by
adding or subtracting N from the state index, J is the incident particle
state index (1 £ J £ N) and I is the exit particle state index
(81 < T & am), |
Defining
8(1,d) = W(IW(J) T (J)C(J)p(L,J) (3.3)

the discrete form of the reflection equation becomes

[- 2
de(I,J) = m S(1,J) +

N
WT}_) Z R(I,K)S(K,J) -[——f—g 4%%]‘]3(1"’)*

k=1

2N N 2N
Ty ). STLRLD + 2 ) ) MIKS(ELIRG,I)

L=N+1 K=1 I=N

hA

(3.%)

Equation (3.4) represents a coupled set of N2 first-order
nonlinear ordinary differential equations subject to the initial condi-
tion

R(I,J) =0 (3.5)

at x = 0 for al1 I and J,
The corresponding discrete form transmission equation is

&AL = - opfe LD o+ (3.6)

X 2N
W% exp ll TU-(%ST [ﬁl)dﬂ] [ ﬁ%ﬂ s(I,d) + Z S(I.L)R(L.J)\
' Jp JL L=N+1 ?

N
w5 3‘: T, K)S(K,J) +%Z: 2 NI, ©)5(K,L)R(L, J)
=1 =] +1
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where the exit particle state index, I, for transmitted particles is in
(1,N) and the initial condition is

™I,J) =0 (3.7)

at x =0 for all I and J.

The remaining integral over the total cross section for the
exit transmitted state, G (I), in (3.6) is to be evaluated by assuming
that the total cross section wvaries in a stepwise mammer, i.e,, that
the slab is composed of discrete layers so that the composition does not
vary with position within a layer. Defining the mmcollided component

of the transmitted flux in the general case as
X

_ .2 1
T (x,I) =Wy °*P [— DT G'(I)dx'] , (3.8)
o
in the case of discrete layers the uncollided component becomes
- 0 (I)
Tu(x+h,I) = ‘ru(x,I) exp [- ]Z(ng h] (3.9)
with initial condition
T,(0,I) = 2/W(I). (3.10)

Transmission equation (3.6) can now be rewritten using the
above definition of the uncollided component of the transmitted flux
in the form
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%—x-T(I,J) = -ﬁ%ﬁ NI, 8) +

2
T (1) [%—‘}2 + 3 ) S(I,L)R(L,J)] +
1WA

N R 2N
%mz ™I,K)S(K,J) + % Z Z 7(I,K)8(K,L)R(L,J) (3.11)

K=1 K=1 L=N+1

where the dependence of Tu upon x has been suppressed in order to be
consistent with the notation for the diffuse transmission T,

The discrete form total transmission equation is

%x- T(1,9) = - %;T T,(1,9) +
(3.12)

N
%(75 Z T (I,K)S(K,J) + % 2: % 'rt(I,x)s(x,L)R(L,J)
k=1 = A

with initial condition
(OwhenI=J
Ty (1,3) =

2/W(I) otherwise, (3.13)

Comparison of equations (3.11) and (3.12) for the diffuse and
total transmission, respectively, shows that while the diffuse transmis-
sion equation is more complicated, the additional effort required is
small compared to the effort required to evaluate the double sum term
which appears in both equations,



Solution by Means of Ordinary Methods

Equations (3.4) and (3.11) for the reflection and diffuse
transmission constitute a set of 2(1‘1)2 coupled first-order differential
sugations. A multitude of methods for the solution of such equations are
available in the literature on numericsal analysis {9, 10] . The applica-
tion of two of the most widely used methods will be discussed in this
section,

A fourth-order Runge-Kutta method was tried first, The Runge-
Kutta methods have the advantage of being voth self-starting and relatively
stable, The Runge-Kutta methods were eventually discarded because:

1) more than evaluation of the right-hand-side of the differential equa-
tion is required at each step and this is very time consuming in this
problem due to the double sum on the right-hand-side of (3.4) and (3.11)
or (3.12), and 2) it is difficult to estimate the truncation error per
step.

Next a fourth-order Adams method based on the FORTRAN Monitor
System library subprogram INDV, DPNV [29] was used. The Adams method
requires only one evaluation of the right-hand-side of the differential
equation at each step and the truncation error per step may be
relatively easily estimated. The method is not self-starting so that
special starting equations are required and a large amount of fast
memory space is required. In addition double precision operations are
required at one point in the Adams method to contrel the growth of
round off error due to subtraction of nearly equal numbers from each
other,

In summary, the Runge-Kutta method was easy to apply but was
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very slow and lacked an easy method of estimating the truncation error
per step, and the Adams method while much faster with easy estimate of
the truncation error per step required an excessive amount of core
storage and special starting equations making changes in step size
more diffiemlt,

Solution By Means of Exponential Approximations

The reflection and transmission matrices can be expected on
physical grounds to approach simple exponential growth or decay in each
element as the thickness of a shield layer increases,. Thus it is
reasonable to investigate approximations that would be exact for simple
exponential functions as alternatives to the polynomlal approximations
of the last section. This approach was, in part, motivated by the work
of Hansen, Koen, and Little [11] and Certaine [12] on numerical solutions
of the reactor kineties equations,

The following systematic approach may be used to generate many
differant. tynes of exmanential approximations together with error
estimates for the procedures, lLet the differential equation be given
by

¥ (x) = £(x,y) (3.14)

with initial condition

yix,) = 7, (3.15)
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Let

X, = % + nh n=2012.....

¥, = ¥x,)

£ - f(xn,yn) (3.16)
and

W, = wx,) (3.17)

where w(x) is an as yet unspecified weight function.
Subtract wry(x) from both sides of (3.14), multiply both sides
by exp(-wrx), and integrate from x, to x, to obtain

Xb Xb
ﬁyt (x).wry(x)] exp(-wrx) dx = ﬁf(x,y)-wry (xﬁ exp(-wrx) dx
Xa Xa (3.18)

The left-hand-side of (3.18) is a perfect differential and may be
readily integrated to give

Xb
~ .} r . N PR | . .
Y, = exp [wr(b-a)hJ Yo + exp w. X, Jl_f(x,y)-wry(x)-l exp (.wrx)(:x:.lg)

Equation (3.19) is exact. The integral term in (3,19) will
now be approximated in various mammers, A first-order exponential
approximation results if the simple Euler approximation

xr-!s h2
f(x)ax = (sh)f, + 52 £'(u) (3.20)
X

r
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where x, < udx is used to approximate the integral in (3.29) so

T8’

that

Tr4s = exp(shwr) [yr +h (fr'wryr)] + ;h 2 exp(wrxr-i‘s)I'(n)

(3.22)

where

I(x) = [tx,3)-w3(x)] exp(-w x). (3.22)
One can now define the weight function as

w(x) = f(x,y) / y(x) =y'(x) / y(x) (3.23)

so that the term containing f -wy_ in (3.21) will be zero and (3.21)
becomes
2

Tpss = oxp(shw )y  + sg exp(wrxm) I'(u). (3.24)

The first-order approximation (3,24) is the exponential
equivalent of Euler's method, It is remarkably simple but exact for
an exponentlial dependence of y on the independeni variabie x.

A second-order exponential approximation results if the
trapezoidal rule

X
+S
[I?x) dx=-§}—’[Ir + Ir,,s]- (_%1%)3 I (u) (3.25)

is used to approximate the integral in (3.19) so that
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= sh
Ip4s = exp(shwr) o ¥t exp(wrxr_’s) [2 Ir-!s -

(;—12‘)3 T (u)] (3.26)
The second-order exponential approximation (3.26) which was obtained
by means of the trapezoidal rule is an implieit eéquation in that the
value of ,Ir +s depernds upon the unknown value of Yr +s that is being
sought,

When s is even, and the midpoint rule

Xr4s/2
/ E(xé dx = (sh)I, + (51-‘-/3313 I(v) (3.27)
Xp.s/2

where X g/2 < V< Xpt8/2 is used, then (3.19) becomes

reg/2 = exp(shwr) Ir-s/2 +

3
(sh/2) 11
) o (3.28)

exp(wrxr_._s/ 2
The second-order exponential approximation (3.28) is a very simple
explicit equation that can be used to predict the new value of y.
Equations (3.26) and (3.28) can be combined so as to yield an
error estimate for the second order exponential approximation. If

s=2 is used in (3.28) the predicted value of y at X4 18

+1

yl;+1 = exp(Zhwr) Ipa1 (3.29)
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where the superscript p denotes a predicted value, and if s=l is used in
(3.26) the corrected value of y at X.y 18
c _ .
Tpil = exp(hwr) Vo + exp(wrxrﬂ) % (£ q-¥ r+1)‘ (3.30)
where the superscript ¢ denotes a corrected value, Now make the
assumption that, for small enough h, the second derivative terms in
(3.26) and (3.28) are approximately equal and solve for the approximate

error per step when the second-order predictor-corrector pair (3.29) and
(3.3) are used in the form

Vo - ¥
c _ “r4l T Jpsl
Yr+1 “Ypa T 5 (3.31)
which is entirely analogous to the usual relation for polynomial
approximations [9] .

The error estimate for the first-order exponential predictor

yf-l-l = exp(h e ) Ir (3.32)

obtaining by ignoring the error term in (3.24) is

2
B =54 exp(wx ) [g; (£(x,y)-w,y(x) ) exp(-"rx)] (3.33)
x=u

where xr< u<xr This error may be estimated by

+1°

2
= b
Er+1 - 2 "n (wr+1 - wr) exp(wrh) I (3.24)

so that the approximate relative error in Yps1 compared to Iy when



the first-order exponential approximation (3,32) is used is

E 2
=23 _  _h”
T+ i) 2 r (wr+1 - wr) (3.35)

Both the first and second order exponential approximations were
tried, In practice the second order procedure was not as good as the
first order procedure because of a tendency of the second order
procedure toward a type of instability in which alternate steps diverge
in opposite directions from the true solution and the loss of flexibility
because the second order procedure is not self starting,

The final version of the numerical solution of the plane
geometry reflection and transmission equations was therefore based upon
the first order exponential predictor (3.32) with the stepwise error
estimate (3.35). When applying these exponential approqumtions to the
reflection and diffuse transmission equations (3.%4) and (3.11), one must
be careful to define sultable weighting functions, Because of the zero
initial condition, the right-hand-sides of differential equations (3.4)
and (3.11) must be split into vanishing and nonvanishing terms.
Fortunately, the nonvanishing terms may be integrated analytically. This
is a major factor in the stability of these numerical procedures
particularly in the case of the reflection equation in which the non-
vanishing term is always of the same order of magnitude as the term
which vanishes at the origin,

Rewrite equation (3.4) in the form

%x" R(X,I,J) = B(va’J) + Kr(ontJ) (3'36)
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where
B(x,I,J) =WT§'VT(37 S(1,J) (3.37)

and K (x,I,J) is the rest of the right-hand-side of (3.4). Because
esch term of Kr(x,I,J) contains R(x,I,J) as a factor

R(0,1,9) = K _(0,I,J) =0 (3.38)

W (x,I,9) = K (x,1,J)/R(x,1,9) (3.39)

is finite at the origin,
Following the same procedure as before, one obtains in the
first order exponential approximation

R(x,I,J) = exp [w (x,1,J) h] R(x,I,J) +
T AX+h
exp bﬁrtx,I,J) (xﬂhﬂ B(s,I,J)exp[fw}(x,I,J)s] ds (3.40)
“X
Now, if B(s,I,J) is a constant in the interval s = x to s = x+h
(i.e., a slab composed of discrete layers) equation (3.40) can be
integrated to give

R(x+h,I,J) = exp [Wr(x,I,J)h] R(x,I,J) +

[B(x,I,J)/Wr(x,I,J)] (exp[wr(x,I,J)h] - 1) (3.451)
with relative error estimate
n2 .
B, = -3~ W_(x) [Wr(x+h) - Wr(x)] (3.42)

in which the particle state indices have been suppressed for clarity,

Equation (3.11) for the diffuse transmission is rewritten in



the form

-g-m- (x,1,d) = Fy(x,1,J) + Ky(x,I,9) (3.43)
vhere , , _

P10 =2Rd 1 (1) (3.44)

and Kt(x,I,J) is the rest of the right-hand-side of (3.11)., As in

the reflection case

7(0,1,J) = K.(0,1,3) = 0 (3.45)

W.(x,I,J) =K. (x,1,9)/Xx,1,J) (3.46)

is finite at the origin,
Applying the first-order exponential approximation to the
diffuse transmission equation written in this form yields

T(x+h,I,J) = exp [Wt(x,I,J)h] ™(x,I,J) +[exp[wt(x,I,J) (x+h)]
X+h
B . [l - PO | -' s [HE
jFl(s,I,J)exp l-Wt(x,I,J)sJ dsJ R (3.47)
X
In the case of discrete layers with constant properties in

the interval (x,x+h) one can write

Fl(s,I,J) = F(x,I,J) Tu(x,I) exp[- ﬁ%;—l- (s-x)] (3.48)

where

F(x,I,J) = SWIJJ (3.49)

and (3.47) can be integrated to yield
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T(x+h,I,J) = exp[wt(x,I,J)h]T(x,I,J) +

Wy, 1LY - exp[:,e\—l/%—'é%'ll]) (3.50)

F(x,I, J)T (x,I) (

Wy (x,I,9) + __%_%I

with relative error estimte

.
B, = - 5 W@ [V (xm) - W) (3.51)

where the particle state indices have been suppressed for clarity.

Because the uncollided component of the transmission, Tu,
eventually becomes negigible with respect to the scattered component,
T, at large thicknesses the transmission equation (3,50) tends to

become simply

T(x+h,I,J) = exp[wt(x.I,J)h] ™x,I,d) (3.52)

that is, the stabilizing effect of the analytically integrated term
decreases as the attenuation increases.

A large amount of analytic and experimental effort was exrended
on the question of the numerical stability of these approximations.

The results may be summed up quite simply.

The numerical solution of the reflection equation is stable for
all step sizes in the range of interest provided that the reflection
calculation is terminated and the reflection set to a constant value for
the remainder of the region when the derivative of the reflection with
respect to the slab thickness x becomes less than 0,001 to 0,0001.

This is not restrictive since such a cutoff is highly desirable to

gnaed un tha commtation
Speele W W25 il Al
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The numerical solution of the transmission equation is unstable
for step sizes larger than a quantity that is of the same order of
magnitude as the partial derivative of the right-hand-side of the
differential equation (3.11) with respect to the transmission variable,
An estimate of this quantity that has been used suoccessfully may be
obtained by dividing the smallest direction cosine used in the
angular integrations by the largest value of the total macreoscopie
cross section used in the problem.

Since larger step sizes can be allowed in the numerical solution
of the reflection equation than for the transmission, and the transmis-
sion equation is much simpler to evaluste for a constant reflection, it
was found advantageous to use separate step sizes for the reflection and
transmission equations. The reflection step size was allowed to assume
some integral multiple of the transmission step size if the stepwise
error estimate for the reflection was smaller than the error estimate
for the transmission or if the transmission step size was restricted to
a smaller value because of the stability limit.

Equations (3.42) and (3.51) for the stepwise error estimates
show that the step size should be adjusted in proportion to the square
root of the ratio of the desired stepwise error criterion to the estimated
stepwise error. In practice it was found better to use the third root
to eliminate or strongly damp any tendency to overshoot and oscillate
about the desired step size.
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Discussion

Successful numerical solutions of the reflection and transmission
equations were obtained by all four of the methods described as well as
a few other variations not described here, Most of the solutions were
too slow to allow realistic energy dependent problems to be solved in a
reasonable length of time, The exponential approximations were introduced
in order to take advantage of the physics of this particular preblem and
proved to be quite useful,

The first computer program used the Runge-Kutta method and was
written in the FORTRAN programming language. Later programs were written
in the MAD programming language and designed for use with the M, I, T.
time sharing system as well as the normal IEM 7094 batch processing.

One version of the MAD program using the Adams method used FORTRAN double
precision subroutines in an effort to reduce the problem of numerical
instability encountered with this method. This effort was not
successful and the method was abandoned.

The final version of the computer program based upon equations
(3.41) and (3.51) named "Program STAR" where STAR stands for "Slab
Transmission and Reflection" is described in Appendix C.



CHAPTER IV
RESULTS

Introduction

Four problems have been selected to illustrate the application of
the invariant imbedding method. The problems are presented in order of
increasing complexity, The first problem is a simple rod modelrestricted
to monoenergetic particles with a very special scattering law, It is
included because an analytic solution is possible, The second problem is
a slab shield in which all particles have the same energy and the scattering
is isotropic in the laboratory coordinate system. This problem is included
because solutions are available in the astrophysical literature[2, 13].

The third problem is a slab shield composed of water with a plane isotropic
fission source of unit strength located at one face. The results are
converted to a point source geometry and compared with the extensive comuta-
tions published by the Shielding Division of the American Nuclear Society

[14] . The fourth problem is a slab shield composed of alternating layers
of iron and polyethylene with a plane isotropic fission neutron source of
unit strength located at one face, The results are compared with those of
Alen ot al.[15] . Mnally, the computing time required for these problems
is discussed;

The invariant imbsdding method reeults nrasented in this chapter
were obtained from a computer program named STAR which solves the plane
geometry invariant imbedding equations using the first-order exponential
apprgximation described in Chapter III, Program STAR is described in

detail in Appendix C,

The definition of the relative error in percent, used throughout
this chapter is

R, E.in4% = True Value - Approximate Value

True Value X 100% (4.1)
where the true value is to be taken as the data to which the program

STAR result is being compared unless otherwise noted.
50




Monoenergetic particles in a thin rod. The model for which the
analytic solution discussed in Chapter II is valid can be described as a
thin rod or wire with source particles incident upon one end and
constrained to move only along the axis of the rod without change in
energy. A short computer program hamdd ANSOL was written to obtain
precise values of the analytie solutions of the reflection and transmis-

sion equations for this model.
Analytic and program STAR results for a rod model problem in

which the scattering was isotropic and the mean number of secondaries
per collision, C, was 0.9 are presented in Figure 3, Figure 4, Table I,
and Table IT, The results are in terms of the reflection and transmis-
sion variables used in Chapters II and ITI, The reflected and transmitted
scalar fluxes for this problem with a source of unit strength located at
one end of the rod (% of source incident upon the rod) would be one-fourth
of the reflection and transmission variables presented here (see Appendix
B for relations between the reflection and transmission variables and other
quantities of interest,)

These results are typical of the behavior of the reflection and
transmission in more complex problems, The reflection asymptotically
approaches a constant value in a homogeneous region and the diffuse and

total transmission approach the same exponential attenuation with increas-
ing length or thickness,

Note that the relative error in the reflection decreases as the

reflection approaches the asymptotic value, but that the error in the
transmission accumulates, The accumulated error in the transmission is
not serious, The same problem was continued to a rod length of 210,0 at
which point the transmission was 2,070E-29 with 1.85% relative error

compared to the analytic solution value of 2,109E-29,
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TABLE I
REFLECTION VALUES FOR ROD MODEL WITH
ISOTROPIC SCATTER AND C = 0.9

_ ]
Rod Length Reflection From Reflection From Relative Error

(Mean Freepaths) Analytic Solution Program STAR (In Percent)
0. 0. 0. 0.
0.25 0.19744 0.19743 0.005
0.50 0.35065 0. 35060 0.014
0.75 0.47164 0.47155 0,019
1.00 0. 56850 0.56837 0.023
1.25 0.64690 0, 64675 0.023
1.50 0.71094 0.71077 0,024
1.75 0.76361 0.76344 0.023
2.00 0.80721 0.80702 0.023
2.25 0,84346 0.84328 0.021
2,50 0.87374 0.87356 0.021
2,75 0.89911 0,89893 0.020
3.00 0.92043 0.92026 0.019
3. 50 0.95355 0.95340 0.016
4,00 0.97722 0.97709 0.013
5.00 1,00651 1, 00642 0.009
£.50 1.02182 1.0217¢ 8,008
7.00 1.02990 1, 02986 0,004
8.00 1,03416 1,03414 0,002
9.00 1,03643 1,03641 0.002

10.00 1.03763 1,03762 0,001

\n
A\
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TABLE II

TRANSMISSION VALUES FOR ROD MODEL WITH
ISOTROPIC SCATTER AND C = 0.9

N ——
m———

Rod Length Diffuse Transmission  Diffuse Transmission R;lativo Error
(Mean Free Paths) From Analytic Solution From Program STAR (In Percent)
0. 0. 0. 0.
0.25 0.19560 0.19546 0.072
0.50 0.33892 0.33878 0.041
0.75 0. 43970 0.43961 0.021
1.00 0. 50676 0. 50675 0.002
1.25 0, 54763 0. 54769 -0.011
1.50 0. 56850 0. 56861 -0,019
1.75 0.57434 0. 57450 -0,028
2.00 0.56911 0.56930 -0.033
2,25 0.55590 0, 55611 -0.038
2,50 0.53712 0.53734 ~-0,041
2.75 0. 51460 0.51483 -0, 044
3.00 0.48976 0.48999 -0,046
3.50 0,43706 0.43728 -0,049
4,00 0. 38461 0.38480 -0.051
5.00 0.29043 0.29058 -0,052
6.00 0.21537 0.21548 -0.053
7.00 0.15831 0.15839 -0.053
8.00 0.11587 0.11593 -0,052
9.00 0. 084633 0.084677 -0,052
10.00 0.061751 0.061783 -0,052

\n
N
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Monoenergetic particles in an isotropically scattering medium,
The second problem consiflers a slab shield composed of some hypothetical

material that scatters particles isotropically in the laboratory
coordinate system without changing the energy of the particle,

The reflection values for seven angular groups were compared with
the reflection values tabulated by Bellman, et al, [13] . It was neces-
sary to divide the reflection by four times the cosine of the exit direc.
tion in order to obtain the same reflection variable tabulated by Bellman,
The relative error between the two sets of values was always less than
1.5, Most of the difference appeared to be due to the fact that the
program STAR results do not generally come out at exactly even values of
the thickness due to the variable step size feature,

The X and Y functions defined by Chandrasekhar and tabulated by
Mayers [16] were used to compute values of the reflection and transmis-
sion from the relations

R(t,u,v) = 2= ¢ [x(t,0)x(t,v) - X(¢,u)¥(¢,v)] (4.2)
and
Meuv) =3 o [ T(tuE(t,v) - X(t,0)(t, )] (4.3)

where t is the slab thickness in mean free paths, u anc v are the exit
and incident direction cosines respectively, and C is the mean number of
secondaries per collision,

The values of the reflection and transmission array elements
computed by program STAR were within 24 of the values calculated from
the X and Y functions at both 1 and 5 mean free paths, Most of the

values differed by much less than 2%, Examination of the resultsshowed
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that the larger differences were in the smaller values of the transmission
for which the difference of two nearly equal numbers is required in the
calculation of the transmission from the X and Y functions,

The X and Y function tables were also used to calculate the
reflected and diffusely transmitted currents according to the relations

1
T (t) = 4 fdu f d'v ﬁ-’; c [x(t,u)x(t,v) - Y(t."u)!(t,v)] (4.4)
and coTe

I (t) = %.fdlu ﬂv ¢ [Y(t,u)x(t,v) - X(t,u)Y(t,v)] (4.5)

where J, and J, are the reflected and transmitted currents,
respectively, due to a unit isotropic source,

The reflected and transmitted currents were within 0.5% at 1
mean free path and within 0.2% at 5 mean free paths,

The question of how the number of angular groups affects the
calculated transmission values was checked by running two series of
problems that were identical except for the number of angular subdivisions
employed in program STAR,

Figure 5 presents the results of the first serlies in the form of
ths net tranomitied flux a2 2 Hmotin of tha incidant diraction and the
number of angular groups, It is apparent that the particles which are
incident close to the normal are the most likely to be transmitted and
that two or three angular groups are adequate for these particles (the
minimum number of angular groups that may be employed without the
introduction of adjustable constants is two).

Figure 6 presents the transmitted current for a unit isotropic
source as a function of the number of angular groups., Again, it is
apparent that two or three angular groups are sufficient, particularly

when it is noted that the attenuation in Figure 6 amounis to some 13
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powers of ten,
Since program STAR continuously adjusts the step size to keep the
estimated truncation error per step close to an error criterion that is

ﬁa” an input variable to the program, it is very important to investigate the

efro_e,t';r this error crihrion.upon the calculated results. Fortunately,
as Pigure 7 shows, the transmitted current is relatively insensitive to
the value of the error criterion. The reason for this is that there is
a limitation on the maximum step size imposed by the requirements for
stability which apparently prevents the step size from
growing to the point where serious error is introduced. Values of the
error criterion greater than 0,1 were also investigated, It was found
that the error control procedure began to fail for values much larger
than 0.1.

The question of how small changes or uncertainties in the input
data affect the calculated transmission values was investigated by
running a series of problems with systematic variations in the value of

the mean number of secondaries per collision, C, and in the error

critericn, The reculte spa swwmawicad $n Tahla TTT.

The effect of the change in the error criterion varies with the
value of C, being about 0,1 to 0.2% at C=0.5, 4 to 5% at C=0.9, and
about 164 at C=0,99,

The effect of changes in the value of C may be described more
easily in terms of the changes in the quanitity (1 - C). A change of
1% in (1 - C) leads to a change of 7 to 9% in the transmitted current.
It should be noted that a 14 change in (1 - C) near C=0.99 amounts to
only a 0,014 change in the value of C itself, so that this type of
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TABLE III
EFFECT OF CHANGES IN C AND THE ERROR CRITERION

(THREE ANGULAR GROUPS USED)

Mean Number Sladb Reflected Transmitted

Of Secondaries Error Thickness Curregt 1) (Cuar;&t 1)
«MEV N- ~MEV™

Per Collision Criterion (Mean Free Paths) (N-CM~

-

0.5 0.1 20,05 -.036671

0.5 0.01 20,05 -.036671 | 4,7298-10
0.495 0.1 20,05 -.036135 4, 465E-10
0.495 0.01 20,05 -.036135 4, 460E-10
0.9 0.1 40,09 -.119506 1,191E-10
0.9 0.01 40,09 -.119500 1,254E.10
0.899 0.1 40,09 -.119046 1,089E-10
0.899 0,01 40,09 -.119041 1.138E-10
0.99 0.1 100.08 -.198254 2.129E-09
0.99 0.01 100,08 -.198467 2,537E-09
0.9899 0.1 100.08 -.198037 1.9758-09
0.9899 0.01 100,08 -.198248 2,345E-09

4.7198-10
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problem will be extremely sensitive to small changes in the input data
when the absorption in small and C is close to unity,

Polyenergetic nesutrons in water. The third problem is a much
more realistic problem in which energy and direction dependent cross
sections are used. Reflection and transmission values were computed
for neutrons incident upon a slab shield composed of Water.

The cross sections for neutron interactions with water were taken
from either the report on moments method calculations in water by Aronson
et al,[17] or from the cross sections prepared by Goldstein for the
Shielding Division of the American Nuclear Society (hereafter referred
to as the S, D, of the A, N. S,) [18] . This microscopic neutron
cross section data was then converted into the desired form for input to
program STAR (see Appendices A and D for details),

The neutron transmission values were converted into neutron
fluxes and doses due to a unit isotropic fission source as part of the
output section of program STAR (see Appendix B for details). The doses
and an occasional flux versus energy plot were then converted by hand to
noint. saurce ganmetry.

Program STAR problems were run with various sets of input data
differing in the number of energy and angular groups and the upper and
lower energy 11.mits. The first problem was based upon the Aronson data
and had 8 energy groups over 0,33 to 18.0 Mev and 2 angular groups. Two
angular groups is equivalent to a double P1 treatment of the angular
dependence because the number of angular groups refers to the order of
Gaussian quadrature used in separate angular integrations over 0 to 1

and -1 to 0 in the direction cosine, This equivalence has been shown
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by Gast [19] who cites work showing better results for double Py

approximations than for ordinary P. approximations,

3

By what now appears to have been a fortuitous event of a very
low probability of occurrence, the calculated dose rates for the eight
energy group problem were almost exactly the same as those reported by
Aronson et al, [17] at distances of more than 30 cm from the source
(the same within about 10% which is very good in this work and not separable
on the usual semilog plots of the dose rate versus the distance from the
source).

Subsequent cases were run with fewer energy groups because the
eight energy group problem could not be run to as great a thickness as
desired within the five minute 1limit for ordinary problems at the M, I, T.
computation center,

A series of three problems were run to check the effect of
changing the number of energy and angular groups. Two and three gngu.hr
groups with four energy groups over 0,1 to 10.0 Mev and two angular
groups with five energy groups over 0.1 to 10,0 Mev based on the
Goldstein cross section data were used., The results are presented in
Figure 8,

One may conclude that the dose rate is more sensitive to the
number of energy groups than to the number of angular groups and that
two angular groups are sufficient to reduce the uncertainty due to the
angular approximation to less than the uncertainty due to the energy
approximation in this problem.

A final water problem was run with six energy groups over 0.33

to 14,1 Mev and two angular groups based on the older cross section

A
£ Aronson st

. A basic change in the preparation of the input
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data to program STAR was made in this problem,

The 4,5, and 8 energy group input data used in the previous water
problems was prepared by averaging microscopic cross section data
tabulated at 16 or more equally spaced increments in the lethargy
varisble u = In(E/E ). A unit flux weighting function was used,

The six energy group input data was prepared from microscopic
cross sections evaluated at precisely the six incident energies used in
the Gaussian quadrature energy integrations., This is a better method of
preparing the input data since it is consistent with the numerical
integration scheme and avoids the problem of choosing the flux weighting
function, Resonances in the cross sections are an obvious problem with
this method and some judgment must be exercised in picking representative
points for the particular problem at hand or in smoothing out the cross
section data, In any case, some approximation with respect to resonances
must occur when only a few energy groups are used, In this case the
desired upper and lower energy limits were chosen and the cross sections
evaluated at the Gaussian quadrature points without approximation because
by good fortune the six points were all fairly representative of the
overall cross section behavior,

The results of the two angular group, four and six energy group
invariant imbedding method problems are compared with other transport
theory results in Figures 9 and 10, The solutions designated C9, M1,

T5, T5', and T8 were reported by the S, D, of the A, N, S, [14] . The
attenuation in plane source geometry is slightly over 10 powers of ten at
the maximum thickness of 210 em of water. Figure 10 has an exponential

scale factor applied to remove most of the spatial dependence and



67

1072
-
10”4
ou: :
o
N
N n
&
51070 f—
N. =
-
T
> B
=
()
= 10"6 -
m
m —
o
(=] -
=
(@]
foe]
E‘ -
D
2
V INVARIANT IMBEDDING, 4 ENERGIES
B O INVARIANT IMREDDING, 6 ENERGIES
AMOMENTS, ANS-SD-1, T5' SOLUTION
_ O MOMENTS, ARONSON ET AL, NY0-6267
10-8 | | I
0 30 60 90 120

DISTANCE FROM SOURCE, CM

FIGURE 9
DOSE RATE VERSUS DISTANCE FROM A POINT
ISOTROPIC FISSION NEUTRON SOURCE IN WATER



A sk

NEUTRON DOSE RATE X 47Tr2 X e*'T, RAD HR™' cM*?

68

10 T T I I T

@ INVARIANT IMBEDDING,4 ENERGIES,2 ANGLES
¢ |~ @ INVARIANT IMBEDDING,6 ENERGIES,2 ANGLES
O MONTE CARLO, SANE II,CODE, M1

A MOMENTS, RENUPAK CODE, T8

V REMOVAL + DIFFUSION, RASH D CODE, C9

» MOMENTS, 75'

O MOMENTS, 75

O MOMENTS, ARONSON ET AL, NYQ-6267

o~
1

N
|

30 60 90 120 150 180
DISTANCE FROM SOURCE, CM

FIGURE 10
NEUTRON DOSE RATE IN WATER VERSUS DISTANCE
FROM A POINT ISOTROPIC FISSION SOURCE

210



RS il o0

accentuate the differences between the various solutions,

The Monte Carlo method solution M1 and the moments method solutions
T5' and T8 were judged by the S, D, of the A. N, S, to be the most reliable
mothods for this problem, The four and six energy group invariant
imbedding results bracket these solutions with the six energy group result.
being closer over most of the range.

The older cross section set of Aronson was used for the six groﬁp
result whereas the newer cross sections prepared by Goldstein for the
A. N, S, problems were used for the four group problem and for the ML,
M5' and T8 solutions., The reason for using the older cross section set
for the six energy group problem was to try to reproduce as closely as
possible the results of Aronson, It was found, however, that in spite
of the older cross sections, the calculated result came closer to the
later moments method solutions published by the A. N. S,

Neutron energy spectra for the six energy group problem at
10, 90, and 180 cm from the source are presented in Figure 11 as well as
a comparison with the spectrum at 90 cm from the moments method results
of Aronson (17] . The moments method specirum was normalized ic the
same dose rate to facilitiate the comparison of the spectral shapes.
The agreement in shape is very good, particularly when it is realized
that a six energy group computation is being compared with a forty
energy group computation,

In summary, it appears that program STAR ylelds acceptable results
compared to other methods for deep penetration calculations in neutron
shields made of water. Although not shown in Figures 9 and 10, the

A, N, S. solutions include several varieties of the DSN and DTK codes that
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gave very poor results analogous to diffusion theory (2 to 3 orders of
magnitude or more in error at 210 cm thickness). This is apparently
due to an inadequate treatment of the anisotropic scattering in water,
By contrast the invariant imbedding method STAR does not seem to have
difficulty in representing the angular dependence of the cross sections
adeguately.

Polyenergetic neutrons in a heterogeneous iron/polyethylene
shield, The fourth problem is designed to show the ability of the

invarlant imbedding method to handle heterogeneous problems, A shield
composed of 4 inches of iron followed by 6 inches of polyethylene
followed by 1 inch of iron is considered. An additional problem was
run for a homogeneous polyethylene slab up to 12 inches thick as a
reference, A unit isotropic fission neutron source is used,

Two angular groups and both four and five energy groups over 0.1
to 10,0 Mev were used, The cross section data was taken from the set
prepared by Goldstein for the A, N, 8. shielding problems discussed in
connection with the third problem.

The results are presented in Table IV and Figure 12 along with
the Monte Carlo method results of Allen et al [15] converted to a unit
isotropic fission source input. A correction in the polyethylene results
was necessary because the polysthylene cross sections were prepared for
a density of 0,907 gm/cm3 whereas the results of Allen et al turned
out to be for a polyethylene density of 0,97. The correction was made by
increasing the polyethylene thickness by a factor of 1.07, i.e., the
6 inches of polythylene was increased to 6.43 inches and the 12 inches

of polyethylene was increased to 12,8 inches,



TABLE IV
NEUTRON DOSE TRANSMISSION FACTORS FOR A UNIT ISOTROPIC
FISSION SOURCE INCIDENT UPON IRON/POLYETHYLENE SHIELDS

Dose Transmission Factor

Shield 4 Group STAR 5 Group STAR  Monte Carlo

12" Polyethylene 0.0018 0,0015 .0,0014

4 Iron/6" Polyethylene/
1" Iron 0.0096 0.0075 0. 0069
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The five energy group results compare better than the four
energy group results as one would expect, The agreement is within
8% for the five energy group problem, This is well within the
accuracy of the conversion of the monoenergetic Mente Carlo method

results of Allen et al.to the fission source input,

Discussion. The results of this chapter indicate that the most
useful applications of the invariant imbedding method will probably be
in problems in which the moments method does not apply because of
heterogeneity and in which the attenuation is large enough to make the
Monte Carlo method unattractive on account of excessive computing time
and in which the scattering is sufficiently anisotropic to make the
application of the usual varieties of DSN or DTK type transport theory
codes suspect.

The computing time required for the various problems is presented
in Table V. The three problems run on 12/27/65 were included to illustrate
the varlation in computing time with the number of energy and angle groups
avan though the program was not as fast as the final version (note that
the error criterion is larger for these problems).

The variable step size feature of program STAR works very well.
The variation of the reflection and transmission step sizes with shield
thickness for the five energy group calculation in the three region
iron/polyethylene shield is shown in Figure 13. The step size gradually
increases in a region and is automatically adjusted to a smaller size at
the start of the next region. Note that the transient change is much

larger in going from the iron into the polyethylene than vice versa as



TABLE V
COMPUTING TIME REQUIRED BY INVARIANT
IMBEDDING PROBLEMS

PROBLEM MAXIMUM  NUMBER OF NUMBER OF ERROR MAXIMUM DATE TIME IN
NUMBER THICKNESS ENERGY GROUPS ANGULAR GROUPS CRITERION STEP SIZE RUN MINUTES
T R _

I 210, 1 1 1,0B-05 1. 5. 1/18/66 0,62
II 6. 1 7 1,0E-03 .0254 ,125 1/15/66 1,68
III 210, é 2 1.0E-02 465 2,325 1/16/66 4.93

210, L 3 1.0E-01 b 100, 12/27/65 4,19
210, 5 2 1.0E-01 U4 100, 12/27/65 2,48
210, 4 2 1,0E-01 A4 100, 12/27/65 1,59
v - 27.94 L 2 1.0E-02 .68 3,40 1/16/66 1.52
27.94 5 2 1,0E-02 .68 3.0 1/17/66 1.75
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one would expect since, because of its hydrogen content, the polyethylene
is less transparent to neutrons than iron,

The effect on the required computer time of the variable step
size and the setting of the reflection to a constant value when the
derivative of the reflection with respect to shield thickness becomes
less than 0.001 is dramatic, In the six energy group water problem run
on 1/16/66, the first 12,6 cm required 1,26 min. or 0,100 min/cm. At
this point the reflection was set equal to a constant value and the next
17.4 cm required 0,24 min for a rate of 0,0138 min/cm which is over
seven times faster than the initial rate, The final rate for this
problem was 0,0131 min/cm for thicknesses of over 30 cm (plus 4.4
sec for each printed point).

The 1.7 min required for the seven angular group monoenergetic
problem run on 1/15/66 compares quite favorably with the approximately
10 min per five angular group monaenergetic problem reported by
Beissner [4] . An additional 0.5 min would have been required to
continue to the same 10 mfp thickness used by Beissner but experiments
with a variable number of angular groups in the monoenergetic problem
have indicated that program STAR is about 3.5 times faster for five
angular groups as compared to seven angular groups, This means that
about 0.6 min would be required for the program STAR problem comparable
to the 10 min problem of Beissner,

After taking into account the difference in speed between the
computers used (IBM-7094 versus IBM-7090), it is clear that 'program
STAR is considerably faster even for this thin shield problem .in which
the high speed transmission only ealculation of program STAR was not

nsed bacanse the reflection does not closely approach its asymptotic
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value until nearly the end of the computation,

Noting that the number of operations required to evaluate the
nonlinear double sum term increases as the fourth power of the product of
the number of energy groups and the number of angular groups, one may
estimate (not stated by Beissner) that the energy dependent computations
with six energy groups and 3 angular groups performed by Beissner [6]
must have required several hours of computer time, This may explain

vwhy no further energy dependent results have been reported by Beissner,



CHAPTER V
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In plane geometry shielding problems in which the shield is very
heterogeneous, i,e,, composed of many layers of differing materials, the
invariant imbedding method seems to offer clear cut advantagesover other
mothods because the computer fast memory requirement is not affected by
the degree of heterogeneity eof the problem, In addition, there is no
need to specify a mesh spacing for the spatial variable and the memory
requirement is not a function of the number of spatial points considered.

In its present form, the invariant imbedding method also seems to

be the method of choice in plane geometry shielding problems in which

the following three conditions are satisfied: 1) the shield is heterogene-

ous so that the moments method does not apply, 2) the attenuation is
sufficiently large so that the Monte Carlo method requires an excessive
amount of computing time and, 3) the scattering is sufficiently
anisotropic so that the application of the usual varieties of the SNG
or DSN type transport theory codes is suspect.

Double Gaussian quadrature at a total of 2n points where n is
two or three was shown to be adequate 10 approximaie ihe anguliar depsnd-
ence even in the water penetration problem in which DSN type codes
incorporating a linear anisotroplc scattering correction failed badly,
The success of the low order angular approximations is attributed in
part to the separation of the transmitted flux into scattered and
unscattered components and in part to the use of the double Gaussian
quadrature,

The use of Gaussian quadrature to approximate the energy

dependence worked well and reasonable results were obtained with four
79
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to six energy groups in the fast neutron region. The problem of how best
to approximate the energy dependence cammot, however, be regarded as
settled in the same sense that it appears that double Gaussian quadrature
is a clearly superior method of treating the angular dependence, One
serious shortcoming of the present method is that thermal and epi-
thermal neutrons are ignored. For this reason it would probably be
better to rewrite the basic reflection and transmission equations in
terms of the lethargy variable and to approximate the lethargy depend-
ence,

A very simple numerical approximation which is exact for an
exponential function was found to work very well for the numerical
.solution of the reflection and transmission equations, The following
features were found useful in asccelerating the solution of the plane
geometry reflection and transmission equations: 1) a variable step size
which is automatically adjusted to give a desired value for the estimated
relative truncation error per step regardless of the material properties
of the region, 2) a different step size for the reflection and transmis-
sion calculations allowing the more difficult reflection calculation to
be performed less often and, 3) the termination of the reflection
calculation when the reflection closely approaches its asymptotic
value,

It was found necessary to limit the maximum allowable step size
in the transmission calculation on account of numerical instability at
large step sizes, This places a 1limit on the speed of the solution since
in the outer portions of a thick shield layer, the step size in the
transmission equation solution is limited by the numerical stability

1imit to step sizes much smaller than would otherwise be allowed by
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stepwise error considerations.

Fortunately, the transmission equation solution when the reflec-
tion 1s assumed to have attained its asymptoti¢ value is so much faster
than the combined reflection and transmission calculations at the
begiming of a shield layer that this limit has not been toe restrictive
in practice. However, it would be mmch better if a method of avoiding
the numerical instability gould be devised which would still allow
large step sizes with small error and further work in this area is
suggested,

Beissner [4] suggested that in some cases in which forward
scatter is large compared to backward scatter, one might be able to
neglect the double sum terms in the reflection and transmission equations
(3.4) and (3.11). This does not seem to bs a very good approximation in
practical circumstances over most of the range of the reflection and
transmission variables, There is, howsever, a real incentive to
investigate some such scheme because whenever the double sum terms can
be neglected, the number of operations required to evaluate the right-

hand-sides of the differential equations drops from a fourth power to a

LIS 4
v wva

third power dependence upon ihe number of pariicle statses and wos
the computer time required for these problems is consumed in these
evaluations,

The double sum terms can certainly be neglected at the first
step and the question is to how to set up some criterion for deciding
for how many more steps they can be neglected., This could turn out to
be significant since the step size is smallest near the origin and a
substantial fraction of the computer time required for any given
problem is consumed in advaneing the solution in the region near the

origin,




82

The combination of some way to eliminate unnecessary evaluations
of the double sum terms coupled with a numerical solution of the transmis-
sion equation with a less restrictive stability limit could potentially
make the invariant imbedding method the method of choice for a very
wide range of plane geometry shielding problems,

Finally, there seems to be little incentive to apply the
invariant imbedding method to criticality calemlations in plane geometry,
There are easier methods of obtaining eriticality estimates in plane
geometry without becoming so involved in the details of the flux
distributions.

There is a possibility, however, that the invariant imbedding
method may have a useful application to criticality calculations for right
circular cylindrical shapes. Because this case is of great practical
interest the idea wlll be discussed in some detail. Basically, one
imagines that a cylinder is built up from a series of thin discs in the
same way that a right circular cylinder may be built up by stacking
coins and considers the reflection of neutrons from one end of the
cylinder as the height of the cylinder varies, A very complicated
reflection equation may be derived by following the approach given by
Chandrasekhar [20] . For purposes of illustration, a reflection equa-
tion is given for the greatly simplified case in which it is assumed that
the properties of the cylinder vary only in the axial direction, that the
reflection is not dependent upon the azimuthal position in the cylinder,
and that the neutrons all have a common velocity.

Let 2 and r represent the axial and radial position, respectively,
and let./u. represent the cosine of the angle between the neutron direction

and the 4% direction., The reflection of a unit pencil of neutrons
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incident at the center of the end surface of a right circular cylinder of

radius Ro and height z is given by the equation

e R(z 0;-1,1) = a(s)e(z:-1,1) - 20 (2)R(z,0:-1,1) +[¢(z)

!
du' glz;u’,1) R(s.o'-l/e) <r(z)[ d ‘" R(z,0;-..",1)
s(z:-l,-/u“)] + 2T cr(z) 54—[ 'd !

/

d/lab‘ R(S,/ﬂ l:_/alll'l)g(zylj’%")n(zyéb ,-1,/46')] (5.1)

with the familiar initial condition

R(0, 0. st ) =0 (5.2)

that is, the reflection is zero at zero thickness (cylinder height in
this case) for all radii and direction cosines.

Note that the reflection equation is similar in many ways to
the plane geometry reflection equation except that it is now a partial
differential equation with a triple integral for the last term instead
of the double integral in the plane geometry case, the additional
integration being over the radial coordinate,

For criticality one desires to find out the value of z for
which the reflection diverges toward infinity. The value of the reflec-
tion itself is not important and any convenient type of incident source
may be used to obtain an equation for the reflection., The relatively
simple form of the above equation for the reflection is partly a
consequence of a judicious choice of the incident source so that several
terms in the more general reflection equation vanish, This simplified

equation shows clearly, however, the general nature of invariant
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imbedding equation in this cylindrical geometry case, It is hoped that
this discussion will stimulate further investigation to see if a practical
procedure can be developed applying the invariant imbedding method in
this speclal case of cylindrical geometry.

In summary, the invariant imbedding method has been shown to
yield useful results in a practical length of time in certain cases of
practical interest in neutron shielding, The areas in which further
work has been suggested iﬁcludo: 1) transformation to the lethargy
variable, 2) investigation of more stable numerical solution techniques
for the transmission equation, 3) elimination of unnecessary evaluations
of the nonlinear term, and 4) the possible application of the invariant
imbedding method to the calculation of the critical height for a right-
circular cylinder.



APPENDIX A

INPUT DATA PREPARATION

Introduction

The numerical solution of the plane geometry reflection
and transmisslon equations requires the following input data:
1) the abscissas and weights for the integrations over energy,
2) the absclissas and weights for the integrations over the
particle direction cosines, 3) the average value of the total
macroscopic cross section for each energy group, 4) the
average value of the mean number of secondarles per collision
for each energy group, and 5) the probability of transfer
from one particle state to another particle state as a result
of a collision.

The following sections are restricted to the preparatlon
of input data for neutron transport problems only, but similar
procedures could be used to generate input data for gamma ray
transport problems. '

The state-to-state transfer probability matrix contalns
all of the information concérning the angular dependence of
the scattering processes in the scattering medium. At the
energies of 1ﬁterest in nuclear reactor shielding problems,
the interéctions of neutron with nuclel which must be
considered are : 1) elastic scattering, 2) inelasitic scai=-
tering, 3) n,2n reactions, and 4) fission reactions. Only
the elastic scattering process contributes an anisotroplc
component to the state-to-state transfer probabllity silnce
the other processes may be éssumed to result in an 1isotropic
angular distribution of scattered neutrons in the laboratory
coordinate system.

The fisslon process is included in this section only
for generality. In a shield, flssionable material will not
ordinarily be present. If there is no fissionable material,
neutrons can not increase in energy after entering the
shield, and those elements of the state-to-state transfer

probably matrix for which the neutron energy would
85
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increase are zero and do not have to be calculated.

The cross section data preparation computer program
(program CSDP) listed in Appendix D solves the equations of
this chapter for a maximum of 5 nuclides tabulated at a
maximum of 100 energy points and provides punched output
in a sultable format for input to the computer program
( program STAR) for the solution of the plang geometry
reflection and transmission equations listed in Appehdix C.

Abscissas and Welghts for Numerical Integrations

Any desired numerical integration formula may be used
to compute the absclssas and weights that are required for
the numerical solution of the reflection and transmission
equations. It is not necessary to use the same formula for
the integrations over energy as for the integrations over

particle directlon cosilnes,

In thls lnvestigatlon, Gausslan quadrature was used for
both integrations. The absclissas and weilghts for the energy
integrations ﬁere obtained from | ’

E_ = BEHn - EL1)/2](1 + ETA 1) + EL, (1)
WE, = BEHn - EL1)/2] Wy n (2)
where ETAk,n and Wk,n are the abscissas and.welghts

tabulated by Lowan, Davids, and Levenson @2] for Gausslan
quadrature at n points in the interval (-1,1), EL; is the
lower 1limit of the lowest energy group, and EHn is the upper
limit of the highest energy group.

Similarly, the abscissas and welghts for integrations
over particle direction cosines were obtalned from

MU, = (1 + ETAj,n)/E (3)

J

WMU, = Wa,n/2 . (4)
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Total Cross Section

The macroscoplc total cross section for each energy group,
Tcsk, was obtalined from

NN EH
k
1;1 ADi ’ ¢(E).dt’1 (B) dE

E
[Froce) az
'ELk

where ADi is the atom density of the ith nuclide, NN is the
number of nuclides, ¢(E) is the neutron flux as a function
of energy, and. dt,i(E) is the microscopic total cro;ss
section of the ith nuclide as a functlon of energy.

The trapezoidal rule was used to evaluate (5) because
the energy points at which Cﬂhi(E) is tabulated are not
always uniformly spaced and cannot be chosen 1n advance.

708, (5)

Mean Number of Secondaries per Collislon
The mean number of secondaries per collision for the

1th nuclide as a function of energy, ci(E), is
Vy(E) O 4 (B) + O 4 (B) + 2 Cpop 4 (B)

0, (E) = (6)
0,1 (E)
and the mean number of secondarles per collision for the kth
energy group, ck, is
NN E '
Y ap [HkNE)cl(E)dE
i
=1 ELk
Gk = ST {T)
ADt 'jr ¢(E)QAE
ELk
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wherel{(E) is the mean number of neutrons per fission for
the ith nuclide as a function of energy, Cff 1(E) is the
microscopic fission cross section, C& 1(E) 1s the mlicro-
scopic scattering cross section(includes both elastic and
inelastic scattering), O;En,i(E) is the microscopic
n,2n reactien crqss section, andlADt is the total atom-
density. "

The trapezvidal rule was used to avaluate (7).

State-to-State Transfer Probabilit

Let P(E,,E 5§23, () be the probability of transfer
of a neutron from energy E, and direction (), into unit
energy about Em and into unit so0lld angle about f}l as a
result -of a collision with the normalization

o0
,/;Emﬁ 0, P(Ek,Em;QJ,Ql) = 1. . (8)
0 allfz

The sum of the flission, inelastic, and n,2n contributions
to the transfer probability is

Perinsmon (Beo By () =

NN

A ADir _
E17 %'1 E:‘.Uj_(Ek) Ufyi(Ek)gf,i(Ek’Em) + (9)

Oin,1(Bx)8yy 4 (BysBy)  + dn2n,1(Ek)sn2n,1(Ek’Em)] /

E’i(Ek) dt,i(Ek)]

where 8¢ 1(Ek’Em) 1s the energy spectrum of neutrons emitted
’
in a fisslon reactlion caused by a neutron of energy Ek
incldent upon the ith type of nucleus, g,, 1(Ek’Em) is the
H
energy spectrum of inelastically scattered neutrons, and
gnen,i(Ek’Em) is the energy spectrum of neutrons emitted ln
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the n,2n reaction.

The various energy spectra are subject to the normali-
zation conditions

oo
fgr, 1 (ByrBp)dEy = 1 (10)
°
']g:;’i(Ek,Em)dEm =1 (11)
o .
fgioa,i(Ek’Em)dEm =2 , (12)
()

that 1s, the fission and inelastic energy spectra are normal-

ized to unity and the n,2n reaction energy spectrum is norm-

allzed to two in order to make maximum use of existing data.
Let the differential elastic scattering cross section

in the center-of-mass (C.M.) qoordingte system be represented

by an expanslion 1n a finite serles of Legendre polynomials

6f the form

X |
(E.)

%, 1 (B, MLo) =g%%i[1 + 12::1(21+1)F1,1(Ek)?1(/1°)]

(13)

where 6, = cos'1[ic is the deflection angle in the C.M.
system, une Fl 1(Ek) are cocificicnts tabulated ac funetione
H

of energy for each nuclide, the Pl([ic) are Legendre poly-
nomials of order 1, and '

Oe,1(B) = [ };uco’e 1 (Bys L) - (14)

If & = cos VL 1s the deflectlon angle 1n the laboratory
(L.) coordinate system, df) = dLLdeis a differential element
of solld angle in the L. system, and d§2 dLQ de is an
element of solld angle in the C.M. system, then

Je,i(Ek"#)du d¢ = O;;i(Ek’uc)ducdcp (15)



90

or
Ot (Brll) = Oy (Bes [l )aflo/apl . (16)

The elastic scatter contribution to the transfer probab-
111ty 1is

P (Ek Eyi Qs Su) =
NK ADl 1(Ek uc ) %‘26 Em-E

ID,0
= Ct,1

where

U= Q;].Ql =/J~j Uy +‘\/1TL€\/17-/,€ cos(¢l-¢3) (18)
K, [ILL(VAE-HILF L) - 1] /Ay (19)

and where Ai is the mass number of the target nucleus and the
Dirac delta function is necessary to conserve energy (cf.
Weinberg and Wigner [23] ). Differentiation of (19) gives

: W21 + ()2
gﬁ[_c' =( AS-14LC + L) . (20)
A\ 221y P

The transfer probability for azimuthally symmetric
scattering (the usual case) is obtained by integrating (9)
and (17) over all possible values of ¢1f Defining

¢ ¢j ¢1 and using the symmetry of cossu in {0,277 ),
one obtains

W
P(ByoBps Ly [4y) = ) iD,
i=1

é[V:L(Ek) Op,1 (B lge 4 (BysB) + iy 4 (Bdeyy 3 (BoBy) o+

Unen,i(Ek)Snzn,i(Ek’Em)] * (21)




Ai + 1

] |
o[ Gttty :ﬁ%[%-% [ ]a¢/
0

sz 0,12y

where LI, [l,, and duo/dﬂ are all functions of #.

Define the state-to-state transfer probability,
TP(SEl,m, J,k)’ as the probability that a neutron will be
transferred from incident state SIj,k (incident direction
cosine in direction cosine group J and incident energy in
energy group k) into a differential direction cosine range and
into a differential energy range 1ln exit state SEl,m (exit
direction cosine in direction cosine group 1 and exit energy
in energy group m). The state-to-state transfer probability
is obtained by averaging (21) over the incident and exit
directions and energies in the followilng manner

TP(SEl,m;SIJ’k) = (22)

EHk MUH, (MUH, |
o dE2 f(E,,MU,) P(E,,E,;MU, ,MU,)

MUH
(MUH -MULl) (EHm-EL ) f [dMU1 ¢(E1,MU1)

where ¢(E1,MU1) is a welghting function that would be the
energy and direction dependent neutron flux, if that flux
were known.

The fission, inelastic, and n,2n terms in (21) do
not depend on direction. The contributlion to the state-
to-state transfer probabllity from these processes is
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NN
TPf+1n+n2n(SEl m;SIj k) = 3 ADi
y 14
=1 Iy (23)

dE
f [ 2 O(Ey) P inenon,1(E1oEp)

(EHB-ELN) ‘/’ dE, O(El)
EL; '

where ¢(E1,MU1) has been assumed to depend on E1 only and
where

Pevinsnon,1(BEp) = [Vi(E1) O¢,1(E )ep 4 (ByEy)  +
Oin,1(B1)81p ,1(BpEy)  + O'nzn,i(E1)gn2n,1(E1'E2)] /

[ci(E1) o;,i(ng] . (24)

The contribution to the state-to-state transfer probability
from the elastic scattering process is

TP, 4(SE) 1381 ) = Z_.'T)':'
i=1 (25)
B MUHJ ey
de1 [dMU1 ¢(E1,MU1) [ f f dPHI Poy
ELk MUL, MUL 0
J
(MUH, -MUL, ) (EH_-EL_) [ amu, ¢(E1,MU1)
MUL,

where
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Py y = Po ;(B,,ByiMU MU, PHI) =
(26)
A2~ 14M0° 4 an
dMUC 1= %
2 Ce,1(By MUCIqg Ole,-E, I,
o4 (£4) 04,1 (B¢)
MU = (Mﬁ1)(ﬁﬂa) +'1vhuHU? 1-MU§ cos(PHI) (27)
2 2
MUC = [MU(W/A1-1+MU +  MU) - 1] / Ay (28)
2 2 .2
_( \/AS-1+MU + MU)
aMue = 1 (29)
A, \fad-140° ,

and de,i(E1’MU°) is given by (13) with Ek and [[, replaced
by E1 and MUC, respectively.

One integration in (25) may be carried out analytically
by interchanging the order of the integratlions over E2 and
PHI and using the properties of the Dirac delta function in
(26). The result is

: S 0 when E' not in '(Ele,Eam)
dE, | 4PHI B, , =
EL, JO

T aMUC (30)
5 Ce,1 B MUO)=H%  gpu1
A °1 E1 dt,i E1 Otherwise
where
Af-1+MUQ + MU |2
B' = R
1 A+ 1 . (31)

The remaining integrals over the incident energy, E1,
the incident direction cOsine, MU1, the exit direction cosine,



94

MU2, and the azimuthal angle, PHI, constitute the four-fold
integration required for each nuclide for each selement of the
elastic scatter contribution to the state-to-state transfer
probability matrix.

The trapezoildal rule was used for the integration over
E, in (23) and (25) and for the integration over E, ‘in
(23). Gaussian quadrature was used for the integrations .
over MU1,MU2, and PHI in (23).

Discussion

The equations of the previous section have speclal forms
for hydrogen. For any nuclide such as hydrogen for which
elastic scattering may be assumed to be 1sotropic in the
center-of-mass system, (13) becomes simply

E
O, ,1(E,sM00) = dei% 1! . (32)

Setting A,to one in (28), (29), and (31) yields the
speqial forms

- when MU =0

MUC =ﬂ (33)
\2(MU)2-1 when MU =0

(0 when MU <0
(34)

32

4(MU) when MU=>0

0 when MU=o0

E' (35)

(MU)2 when MU=0

is given by (27) as before.
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A useful check of the state-~to~state transfer probability

matrix may be based on the normalization condition (8) in the
discrete form '

NS
}:[¢P(SE;SI) + TP(SE+NS;SI)] WMU(SE)WE(SE) = 1
SE=1 ‘ (36)

where NS i1s the number of particle states (number of energy
groups times number of angular groups in (0,1) ) and where
the term TP(SE+NS;SI) 1s necessary to include all poSsible
exilt states. By definition, states 1t to NS include all
energy groups and all negative direction cosines and states
NS+1 to 2(NS) include all energy groups and all positive
direction cosines. In this scheme, the particle direction
is reversed without change in energy group by adding or
subtracting NS from the state index.

A sum based upon the left-hand-side of (36), plus an
additional component when the lowest energy limit, EL1, is
greater than zero and energy transfer below this energy is
possible, 1s computed and printed’under the heading
SUMSCS(1)...SUMSCS(NS) as a check on the vaiues of the transfer
probabllity matrix. This sum should be unity and , in
practice, was found to be within 0.5% of unity for hydrogen
(vhe worsi case) when 4 point Caucclon guedrature was nsed
for the integrations over MU1 and Mq2 and 8 point Gausslan
quadrature used for the integration over PHI in (25).

The check sum 1s then used to normalize the values of the
transfer probability matrix exactly to unity and recomputed
strictly according to (36) without correction for the lower
energy limit to show the fraction of neutrons being transferred
below the lowest energy group.

The welghting function ¢(E1,MU1) in equation (25) was
assumed to be a function of E1 only.

The fraction of fission spectrum neutrons emitted in
energy group k, denoted by FISSk, is also calculated and
purdched out for use 1ln program STAK.



APPENDIX B
OUTPUT DATA PROCESSING

Introduction

The relations between the reflection and transmission
variables used in this werk amd other variables such as
ngutron angular distridution functions, veetor currents,
scalar fluxes, and dose commonly used 1n neutron transport
theory are summarized in this chapter.

The relatlion between point and plane sources 1is also
discussed.

The reflection and transmission variables are defined
in the same manner as Ghandrasekhar's S and T functlons [2].
This reflection must be divided by four times the exit
direction cosine in order to correspond to the reflection
values tabulated by Bellman, Kalaba, and Prestrud [13]. |

The transmlission variable used in this work includes
only diffusely transmitted neutrons, i.e., neutrons that
have undergone at least one interactlion with the medium
through which the neutrons have passed. The uncollided
component of the transmission in plane geometry is

{o when SE # SI

T,(SEy 2SI, L) = (1)
b 4
2 MU
WTL exp -_1_| pcs dx]
JHE, [ MUjfo K

where SIj,k 1s the incident neutron state index for a neutron
in direction cosine group ] and energy group k

(SI:],k = NEREG(3j-1) + k), SE]”m 1s the exit neutron state
index for a neutron in direction cosine group 1 and energy
group m (SEl,m = NEREG(1-1) + m), NEREG is the number of
energy groups, MUj is the value of the direction cosine
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assigned to the jth group, WMUJ is the width of the Jth
direction ecoesine group, UEk is the width of the kth
energy group, TOSk is the total macrosopic cross section
in the kth energy group, and X 1s the slab thickness.

The total transmission, Tt s 1s obtained by adding the
corresponding elements of the diffuse transmission, T, and

the uncollided Qomponent, Tu.

Relatlons Between Reflection and Transmisslon and Other

The neutron angular distribution function ¢/( /'f) ,ﬁ_ )
of Davison and Sykes [24] has a component for each
incident and exit particle state and is denoted by
PSI(SEl’m;SIJ’k). The PSI functlion for the one-dimensional,
monoenergetic case 1s the same as the intensity I('T”LQ ¢)
of Chandrasekhar [2].

A systematic nomenclature 1s used in which PSIRD
represents .the PSI function based on the diffusely reflected
neutrons at the face of the slab on which source neutrons '
are incident in state SIj,k’ PSITD represents the PSI
function based on the diffuse transmission at the exit face
of the slab, and PSITT is based on the totai transmission.
The PSI functions are obtained by dividing the reflection or

transmisslion vy four timcs the direction casine of the

exit state, 1.9.,

PSIRD(SE, ;SI, ) = R(SEy ,+NS;SI, ) (2)
l,m 3,k 0. .
1
. _ T(SE ;SI )
PSITD(SEy ;3514 ) = nlm,glglk (3)
L. _ T, (SB, _;SI, )
PSITT(SB],g3STy y) = b Lt ik (4)

1
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where the addition of NS to the exit state index in (2)
signifies that the exit direction cosine 1s the positive (see
Chapter III for further detalls on the state indexing scheme).

Note that PSIRD is the same as the reflection function
tabulated by Bellman, Kalaba, and Prestrud [13] for the mono-
energetlc case with isotropic in the laboratory coordinate
system scattering. » |

The neutron vector net current j(?) of Davison and
Sykes [24] has components for each lncldent neutron state
and each exlt energy group, the exit angular dependence
having been removed by integration. At this point, the
assumption 1s made that the source has an 1lsotropic angular
distribution and the incident apgular dependence is also
removed by integration. With this assumption, the vector
current has a component Jm,k for each incident and exit
energy group. The diffuse and total vector currents at the
incident ( 0 ) face and at the face at distance x from the
source face are ’

NMUREG NMUREG

30Dy = ‘}ZWMU.:’ Z WHU;  R(SEy +NSiSI, ,) (5)
=1 1=1
JOT_ . = JOD_ , + 0.25 A
m,k m,k WEk . Om,k (6)
NMUREG NMUREG
JED, | = }}Z:wmuj }Z WU, T(SEy ST, L) (7)
=1 1=1

NMUREG NMUREG

'JXTm,k = ij{:WMUj ZE:WMUl I, (SEl,m;SIj,k) (8)

J=1 1=1
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where the minus sign in (6) comes about because the diffuse
reflected current is directed in the minus x direction and
6m g 18 the Kronecker delta.

The scalar flux O(T) of Davison and Sykes [24] has a
component for each incident particle state and each exit
energy range. With the assumption of an isotroplc source
and an integration over the incident source, the scalar flux
has a component RHOm,k for each incldent exlt and energy
group., The diffuse and total scalar fluxes at the incldent
(0) face and at the face at distance x from the source face

are
NMUREG NMUREG

RHOOD, , = iZWMU ZWMU m *¥S;SI, ) (9)
’ L
1
RHOOT . = RHOOD_ . + 0.5 (10)
m,k m,k WE, 6m,k
NMUREG NMUREG
REOXD, = }ZWMU ZWMU 2(SB; 4381, o) (11)
M i
 NMUREG NMUREG
sEoRr. - 1) wm, ) mmy Ty 5B ST (g
msk L—J j L_a 1 M'ﬁ
J=1 1=1 1

The scalar flux due to a unit isotroplc fission soﬁrce
has a component for each exlit energy group and is given by

NEREG
FLUX; = Z FISS, RHOXT, . (13)
k=1
where FISSk is the fractlon of fisslon spectrum neutrons
emitted in energy group k.
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The dose at the exit face of the slab due to a unit
isotropic fission source is

NEREG |
DOSE = Z WE, RFFCD, FLUX, (14)
1=1

where RFFCD1 i1s the flux-to=-dose conversion factor. The
usual units for RFFCD; are millirad/hr per neutron/cm -seo[?S]

Relation Between Point and Plane Sources

The moments qethod results tabulated by Krumbein
[26] are mdstly for'a point source geometry whereas
the invariant imbedding method results are for a plane
source geometry,
In an infinite, homogeous medium, the followlng
nelatiocn$ are valid [27]

oo
Dprane(?) = 2T ijoint(R) R dR (15)
; Z
Dorane(?) = =(1/2M8) & Dy p,(2) (16)

where D(z) is the dose at distance z from a unit poini our
plane source.

Equation (15) may be used to convert the moments method
results to plane geometry.. It should be noted that the
applicatlion of (16) to the invariant imbedding results is not
strictly valid because the invariant imbedding results are .
for a finite medium and include the effects of the boundarles.

' This difference between an infinite and a finite mg@ium
makes an exact comparison between the moments method and the .
invarliant lmbedding method results impossible, however the
difference should be small for a very thick slab.




APPENDIX C
COMPUTER PROGRAM FOR THE SOLUTION OF THE
REFLECTION AND TRANSMISSION EQUATIONS

The computer program for the solutlon of the plane
geometry reflectlon and transmission equatlons given
in Chapter III has been named program STAR where STAR stands
for Slab Transmission and Reflectlon. Program Star is written
in the MAD programming language [BQ] and 1s sultable for use
with elther the time sharing or normal FMS batch processing
systems at the M. I. T. computation center.

All data 1is read using the simplified "read data" state-
ment which_readg dats in the form A = 1., B = 2., ... until
the symboi # 1s encountered. A comment is printed before
each use of the "read data" statement indicating what infor-
mation is required. The data required by any single read data"
statement may be arranged in any order (or omitted i1f no change
from previous data 1§_des1red) except that arrays must follow
the MAD cqnvegtion of varying the last subscript most rapldly
and terminating * must always be present even 1f no data
is to be read in. -

Most of the output is printed out using the "print results”
statement.

The program nsas the first-order exponentlal approx-
imation given in Chapter III, with the automatic step slze
ad justment, 1f desired, to controd the error buildup and to
allow easy introductlion of materlials of widely varying properties.

The program will handle up %o 64 particle states in 1its
present form, i.e., the product of the number of energy
groups and the number of angular groups must by 32 or less
(each angulér group represents two particle states with
direction cosines of opposite sign). Up to 256 different
reglons 1n a heterogeneous array of slabs may be used.

Program STAR 1s divided into a main program and five

subprograms. The required and optional input is given
101
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1n the remarks in the flrst portion of the input subprogram.

An abbriviated description in words of the main program
of Program STAR is given (the figures in parentheses are
statement numbers) followed by flow dlagrams for the
subprograms,

A l1listing of the main and subprograms and sample problem
input follow. The sample problem was used for the rod model
problems and illustrates the abllity to read in new parameters
controlling the spacing of the printed points, etc., by
using the heterogeneous feature and reading in the new
parameters along with the same or different cross sections
when desired.

Main Program Description

Re?d, grint, and procecess Input data; inltlialize variables
QQ0

Compute)right-hand-sides of R and T differential equations
(QQ10

Exchange variables

Check step sizes (QQl5)

Compute new R and T values (QQ25)

Compute right-hand-sides of R and T differential equatlions
Compute estlmated stepwlse errors

r step size 1a fixed (QQ80)

1) increment variables (QQ110)
2) print output, if desired (QQ120)
3) exchange variables
4) check end of problem conditions and reflection
equation cutoff criterion
5) transfer back to statement QQ25

Whenever only transmission was calculated:

1) increment variables (QQ100)

2) calculate new step size if reflection has been set
to a constant value and transmission step size has
not reached its maximum allowable value

print output, if desired

exchange varlables

W
A




5)
6)

7)

8)
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check end of problem conditions and reflectlion
equation cutoff criterion
check index for next reflection computation(when
transmission step size is smaller than reflectlon
step size) -
whenever ,reflection has been set to a constant value.
a) set transmission only control parameter
b) check step size
transfer back to statement QQ25

When both réflection and transmission were calculated and
the step slze is not fixed:

1)
2)

I Ui Wl
e S St S

9)

10)
11)

12)

13)

compute new step size based on the error criterion
and estimated stepwise error
whenever estimated error is over twlce as large as
the error criterion
a) increment index which will cause problem to
terminate when lndex reaches 20
b) print step sizes, estimated errors, etc.
¢) check index and terminate problem if index
exceeds 20
d) change to new step sizes and return to statement
QQ15
increment variables
print output, 1f desired
check end of problem conditions and reflection
equation cutoff criterion : :
exchange variables
check step slzes
when the error criterion is less than equal to zero
a) fix the step size at the smaller of the new
reflection and trensmission step sizes
b) set for transmission only calculéation when the
reflection equation cutoff condition has been
reached
change to new step sizes allowing the transmission
step size to be an integral subdivision of the
reflection step size 1f called for
set index which counts transmission only computa-
tions back to zero
whenever the transmlission step slze is less than
the reflectlon step slze, set transmission omly
control parameter
whenever reflection equation cutoff condition has
been reached, set transmission only control para-
meter
return to statement QQ25.




PROCESSING
A group of program instructions which per-
form a processing function of the program.

INPUT/OUTPUT
Any functlon of an 1nput/output device.

A group of operatlions not detalled in the
partlicular set of flow charts.,

TERMINAL

The beginning, end, or a point of
interruption in a program.

CONNEGTOR

An entry from, or an exit to, another part
of the program flowchart.

OFFPAGE CONNECTOR

A connectdr used instead of the connector
symbol to designate entry to or exit from
a page.

DECISION
The declislion function used to document
point in the program where a branch to
alternate paths 1s possible.
: : PREDEFINED PROCESS

PROGRAM FLOWCHART SYMBOLS

104
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ET
J/M%S/OA/ READ R PEINT
EFNTK)Y S U BSCAIPT
VECTORS
READ & PRINT PROCESS /NPUT \FPFINT Moy FrED SET
24T L OO ALS INPUT DATA JAITI4L
ATA Sic KL OCKS ”
PENT
IN/TIAL

VALUES

FLOW DIAGRAM FOR INPUT SUBPROGRAM (PAGE 1 OF 1)



JRHoP= |

IRINT = |

PRINT
DEFINITIONS
oF

R&T

PRINT

DEFINI TINS
oF J; e,

I5E, £TT.

COMPUTE NEW
e & TTOT
AT

XT +4T

XPE = X PPN T

FRINT
STANDAR D TeNLy = |
APanD ALD

z T W > 7e511) 5

\ mor [~

FLOW DIAGRAM FOR OUTPUT SUBPROGRAM (PAGE 1 OF 2)
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COMPUTE

| TFHS, FLux,

& DpsE
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CEMPUTE
ALLUYR &
DESER

FLOW DIAGRAM FOR OUTPUT SUBPROGRAM (PAGE 2 OF 2)




COMPUT E

Frx & TK

COMPUTE
RT & SET
pPo=/

A

70

COMPUTE
7K

100 |-

( RETLURN )

FLOW DIAGRAM FOR RHS SUBPROGRAM (PAGE 1 OF 1)
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SAVE @LD
7cs & C
I=7I+
! N RT
A

XC(T)=1.0E+20
XC = xc(T+1)
VR=/

PRECESS NEW MPD) F Y
7cS & C NleXy .
DATA DATA

FLOW DIAGRAM FOR DATA SUBPROGRAM (PAGE 1 OF 2)



Vi=o0

I=T+]

(T NXSREG 7

|
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KedD & PEINT
NEW SCS
DATA

Y

Vr=

XS(T)=4DE+20

/

FROCESS NEW

S¢S
DATA

FPRINT MYDIFIED,

ADD LOF-30 .
7d ££0, 7,470 ATEz20 ?
& S£T
| 7@ =S
F’

-r)

¥

HEPT = O

FLOW DIAGRAM FOR DATA SUBPROGRAM (PAGE 2 OF 2)



EXECHTE

JOBTM, (Trm1)

TIME = 77MI /6O.

!

FLOW DIAGRAM FOR TIM SUBPROGRAM (PAGE 1 OF 1)
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1 The 1listings of Program STAR and the sample problem
occupy pages 112 through 137 of the original coples of

¢ this thesls filed with the Nuclear Engineering Department,
The Massachusetts Institute of Technology, Cambridge,
|Massachusetts.

112




138
APPENDIX D

COMPUTER PROGRAM FOR THE PREPARATION OF INPUT DATA

The cross section data preparation program is written
in the MAD programming language [}0] and is suitable for use
with elther the time sharing system or normal FMS batch
processing at the M. I. T. computation center.

All data is read using the simplified "read data"
statement which reads data in the form A=1., B=2., C=3ejyeeeo
until the symbol #* is encourtered. A comment is printed
before each use of the "read data" statement indicating what
information is required. The data required by any single
"read data" statement may be arranged in any order (or omitted
1f no change from previous data is desired) except that
arrays must follow the MAD conventlon of varying the last
subscript most rapldly and a terminating * must be present
even 1f no data is to be read in.

All data is printed out using the "print results"”
statement,

The program is dimensioned to accept cross sectioms
for a maximum of 5 nuclides tabulated at 100 energy points
or any other combination of nucllides and energies requiring
500 or less storage locatlons.

The fo}lowing daga is punched out 1n a suitable format
to be read with the "read data" statement in program STAR:

1. NEREG = number of energy groups (maximum of 16)

2. E(1)...E(NEREG) = energy assigned to each energy

group
W(1)...WE(NEREG) = width of each energy group
4, PFISS(1)...FISS(NEREG) = fraction of fission
spectrum in each energy group
5. NMUREG = number of direction cosine groups
(maximum of 16)(NS = NEREG*NMUREG must be
32 or less)

W
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MU(1)...MU(NMUREG) = direction cosine assigned to
each direction cosine group
WMU(1)...WMU(NMUREG) = width of each direction
cosine group
T¢S(1)...TCS(NEREG) = total macrosopic cross section
for each energy group
¢(1)...C(NEREG) = mean number of secondaries per
collision for each energy group
scs(1,1)...S05(NS,2#NS) = state-to-state transfer
probability matrix.

A 1isting of the program, sample problem input, and
sample problem output follows. The sample problem was used
for the preparation of 4 energy group, 2 angular group cross
sections for polyethylene based on carbon and hyrdrogen cross
sectlons tabulated at 9 energy points in the onergy interval
from .33 Mev to 18.017 Mev.
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Th§ 1istingé bf the cross section data preparation )
program and sample problem input and output occupy
pages‘140'through 167 of the original copies of this
thesls filed with the Nuclear Engineering Department, P
The Massachusetts Institute of Technology, Cambridge,
Massachlsetts, | | )
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